
WoTKit
Release 1.6.0.SNAPSHOT

Sensetecnic

August 31, 2015

Contents

1 Guide 3
1.1 WoTKit API Guides . 3
1.2 V1 API Reference . 15
1.3 V2 API Reference . 49

2 Indices and tables 61

i

ii

WoTKit, Release 1.6.0.SNAPSHOT

The WoTKit is a web-centric toolkit that helps organizations manage sensors and actuators to collect, aggregate, store
and process sensor data and react to changes in the physical and virtual world.

To get started quickly, see the Quick Start guide. For more information see consult the V1 API Reference.

Please send any questions and feedback to info@sensetecnic.com.

Contents 1

mailto:info@sensetecnic.com

WoTKit, Release 1.6.0.SNAPSHOT

2 Contents

CHAPTER 1

Guide

1.1 WoTKit API Guides

In this section we have listed tutorials which guide users through the API. For reference documentation, refer to Sensor
Data.

1.1.1 Querying Sensor Data

WoTKit provides flexibility in how you want to query your data. In this section, we walk through the different ways
of building a query to get sensor data out of wotkit. The queries are constructed using query parameters which you
append to a URL endpoint.

Typically applications will need to query for raw time-series data of a sensor or group of sensors. There are two
different types of queries: Recent Queries and Time Range Queries.

The following document will walk through some examples of how to take advantage of Recent Queries and Time
Range Queries

Recent Queries

To query for recent data, the API provides parameters for you to either:

1. get the n most recent sensor data

2. get sensor data from t milliseconds in the past until now

In this section we’ll dive in quickly and briefly show an example of Recent Num Queries and Recent Time Queries.

Recent Num Queries

By default, the data endpoint will return the 1000 most recent sensor data items. Try it using a URL like this:

example
http://wotkit.sensetecnic.com/api/v2/sensors/sensetecnic.mule1/data

The response should look similar to the following:

3

http://wotkit.sensetecnic.com/api/v2/sensors/sensetecnic.mule1/data

WoTKit, Release 1.6.0.SNAPSHOT

1 {
2 "numFound": 0,
3 "data": {
4 "data": [
5 {
6 "id": 47902511,
7 "timestamp": "1398698531445",
8 "timestamp_iso": "2013-11-29T00:46:36.056Z",
9 "sensor_id": 1,

10 "sensor_name": "sensetecnic.mule1",
11 "value": 69,
12 "lng": -123.17608,
13 "lat": 49.14103
14 },
15 {
16 "id": 47902514,
17 "timestamp": "1398698531445",
18 "timestamp_iso": "2013-11-29T00:46:39.556Z",
19 "sensor_id": 1,
20 "sensor_name": "sensetecnic.mule1",
21 "value": 52,
22 "lng": -123.17599,
23 "lat": 49.13919
24 },
25 /*more data*/
26],
27 "fields": [/*Fields information*/]
28 },
29 "query": {
30 "limit": 1000,
31 "recent_n": 1000
32 }
33 }

Field Description
num-
Found

The total number of elements matching this query (Note: that numFound is deprecated showing a
value of 0)

data The enclosed sensor_data. Always sorted from oldest to newest timestamp
query Contains the interpreted query from the request. For debugging.
metadata Extra information. Depends on use case.

The query field is particularly interesting because it tells you how the query was interpreted. In this case, the query
has a limit of 1000 and a recent_n of 1000. A recent_n query fetches the n most recent items. This is useful when
API users want to peek at the recent data without having to construct complex queries.

In essence, the query we ran is a convenient default for the explicit version:

example
http://wotkit.sensetecnic.com/api/v2/sensors/sensetecnic.mule1/data?limit=1000&recent_n=1000

Next we can try a recent_t query, which looks up the timestamp.

Recent Time Queries

Recent Time Queries are very similar to Recent Num Queries. While Recent Num Queries look at data count i.e. the
last 10 elements, or the last 50 elements, Recent Time queries look at the timestamp instead. So, it’s useful for where

4 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v2/sensors/sensetecnic.mule1/data?limit=1000&recent_n=1000

WoTKit, Release 1.6.0.SNAPSHOT

we’re interested in the elements from the last hour, or the last 12 hours.

Request

example
http://wotkit.sensetecnic.com/api/v2/sensors/sensetecnic.mule1/data?recent_t=10000

Response

1 {
2 "numFound": 0,
3 "data":{
4 "data": [
5 {
6 "id": 47967438,
7 "timestamp": "1398698531445",
8 "timestamp_iso": "2013-11-29T18:34:09.557Z",
9 "sensor_id": 1,

10 "sensor_name": "sensetecnic.mule1",
11 "value": 62,
12 "lng": -123.14509,
13 "lat": 49.186
14 },
15 {
16 "id": 47967445,
17 "timestamp": "1398698531445",
18 "timestamp_iso": "2013-11-29T18:34:13.059Z",
19 "sensor_id": 1,
20 "sensor_name": "sensetecnic.mule1",
21 "value": 53,
22 "lng": -123.1454,
23 "lat": 49.18565
24 },
25 {
26 "id": 47967446,
27 "timestamp": "1398698531445",
28 "timestamp_iso": "2013-11-29T18:34:16.557Z",
29 "sensor_id": 1,
30 "sensor_name": "sensetecnic.mule1",
31 "value": 67,
32 "lng": -123.14844,
33 "lat": 49.18323
34 }
35],
36 "fields": [/*Fields information*/]
37 }
38 "query": {
39 "limit": 1000,
40 "recent_t": 10000
41 }
42 }

Looking at the query field this time, we can see it was interpreted as a recent_t query. The query looked for items up
to 10 seconds ago (10000 milliseconds). You can verify this by inspecting the timestamp of the data.

Note: When accessing WoTKit anonymously for public data, the date string is set to UTC. When accessing it using
an api-key the timezone will be set based on the account’s timezone setting.

1.1. WoTKit API Guides 5

http://wotkit.sensetecnic.com/api/v2/sensors/sensetecnic.mule1/data?recent_t=10000

WoTKit, Release 1.6.0.SNAPSHOT

We’ve just shown you how to run both Recent Queries. One parameter to make note of is the limit parameter. At
the moment, limit is capped at 1000 – which restricts how much data you get in recent_n and recent_t queries. To
overcome this we will look into paging through historical data next.

Time Range Queries

At the end of the last section, we noted that there is a weakness in the recent queries which limit your ability to sift
through historical data. You can page through historical data using the following query parameters. For the remainder
of this tutorial we will be working with the sensor rymndhng.sdq-test.

Querying with Start and End

We’ll start with a simple practical example. We have a defined starting time and ending time where we
want to get all the data in between. I want to know what data was there between the iso timestamp
2013-11-21T11:00:51.000Z and the iso timestamp 2013-11-29T22:59:54.862Z, or from start:
1385031651000 to end: 1385765994862

Note: It is important to note that start is exclusive and end is inclusive. When using start=100 and end=200
the query will return:

start < sensor_data.timestamp <= end

Query Parameters

Query Parameter Value
start 1385031651000 (2013-11-21T11:00:51.000Z)
end 1385765994862 (2013-11-29T22:59:54.862Z)

The API requires timestamp values to be in milliseconds, thus we can execute the following request:

Request

example
http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq-test/data?start=1385031651000&end=1385765994862

Response

1 {
2 "numFound": 0,
3 "data": {
4 data: [
5 {
6 "id": 48232725,
7 "timestamp": "1398698531445",
8 "timestamp_iso": "2013-11-29T22:59:09.472Z",
9 "sensor_id": 531,

10 "sensor_name": "rymndhng.sdq-test",
11 "valua": 81
12 },
13 {
14 "id": 48232726,

6 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}test/data?start=1385031651000&end=1385765994862

WoTKit, Release 1.6.0.SNAPSHOT

15 "timestamp": "1398698531445",
16 "timestamp_iso": "2013-11-29T22:59:09.472Z",
17 "sensor_id": 531,
18 "sensor_name": "rymndhng.sdq-test",
19 "valua": 53
20 },
21 {
22 "id": 48232727,
23 "timestamp": "1398698531445",
24 "timestamp_iso": "2013-11-29T22:59:19.633Z",
25 "sensor_id": 531,
26 "sensor_name": "rymndhng.sdq-test",
27 "valua": 0
28 },
29 {
30 "id": 48232728,
31 "timestamp": "1398698531445",
32 "timestamp_iso": "2013-11-29T22:59:24.715Z",
33 "sensor_id": 531,
34 "sensor_name": "rymndhng.sdq-test",
35 "valua": 56
36 },
37 {
38 "id": 48232729,
39 "timestamp": "1398698531445",
40 "timestamp_iso": "2013-11-29T22:59:54.862Z",
41 "sensor_id": 531,
42 "sensor_name": "rymndhng.sdq-test",
43 "value": 97
44 }
45],
46 fields: [/* Fields information */]
47 },
48 "query": {
49 "end": "2013-11-29T22:59:54.862Z",
50 "start": "2013-11-21T11:00:51.000Z",
51 "limit": 1000
52 }
53 }

We can see that start/end was interpreted in the query between the start and end points, specifically start <
data[0].timestamp < ... < data[4].timestamp < end.

Paging Through Data

The previous section illustrated a simple example returning a small range of elements. In real world applications the
response of a query will often return thousands of entries. In such case you might want to sift through a small ammount
of these entries at a time. Let’s try querying a large range by using start=0 and end=2000000000000. We will specify
a limit of 3 to make the response more comprehendable.

Query Parameters

Query Parameter Value
start 0 (1970-01-01T00:00:00.000Z
end 2000000000000 (2033-05-18T03:33:20.000Z)
limit 3

1.1. WoTKit API Guides 7

WoTKit, Release 1.6.0.SNAPSHOT

Request

example
http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq-test/data?start=0&end=2000000000000&limit=3

Response

1 {
2 "numFound": 0,
3 "data": {
4 data: [
5 {
6 "id": 48232722,
7 "timestamp": "1398698531445",
8 "timestamp_iso": "2013-11-21T10:58:51.000Z",
9 "sensor_id": 531,

10 "sensor_name": "rymndhng.sdq-test",
11 "value": 6.7
12 },
13 {
14 "id": 48232723,
15 "timestamp": "1398698531445",
16 "timestamp_iso": "2013-11-21T10:59:51.000Z",
17 "sensor_id": 531,
18 "sensor_name": "rymndhng.sdq-test",
19 "value": 6.8
20 },
21 {
22 "id": 48232724,
23 "timestamp": "1398698531445",
24 "timestamp_iso": "2013-11-21T11:00:51.000Z",
25 "sensor_id": 531,
26 "sensor_name": "rymndhng.sdq-test",
27 "value": 6.9
28 }
29],
30 "fields": [/*Fields information*/]
31 },
32 "query": {
33 "end": "2033-05-18T03:33:20.000Z",
34 "start": "1970-01-01T00:00:00.000Z",
35 "limit": 3
36 }
37 }

In this query we have only asked for 3 elements. We can page data by setting the parameter offset in our request. In
our example, we can retrieve the next page by setting offset=data.size, in our case 3: offset=3. By specify-
ing offset = prev_offset + data.size we can page through data in each subsequent request. Now, let’s
retry the last query with an offset.

Query Parameters

8 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}test/data?start=0&end=2000000000000&limit=3

WoTKit, Release 1.6.0.SNAPSHOT

Parameter Value
start 0 (same as before
end 2000000000000 (same as before)
limit 3
offset 3

Request

example
http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq-test/data?start=0&end=2000000000000&limit=3&offset=3

Response

{
"numFound": 0,
"data": {

data: [
{

"id": 48232725,
"timestamp": "1398698531445",
"timestamp_iso": "2013-11-29T22:59:09.472Z",
"sensor_id": 531,
"sensor_name": "rymndhng.sdq-test",
"valua": 81

},
{

"id": 48232726,
"timestamp": "1398698531445",
"timestamp_iso": "2013-11-29T22:59:09.472Z",
"sensor_id": 531,
"sensor_name": "rymndhng.sdq-test",
"valua": 53

},
{

"id": 48232727,
"timestamp": "1398698531445",
"timestamp_iso": "2013-11-29T22:59:19.633Z",
"sensor_id": 531,
"sensor_name": "rymndhng.sdq-test",
"valua": 0

}
],
"fields": [/*an array of expected values*/]

},
"query": {

"offset": 3,
"end": 2000000000000,
"start": 0,
"limit": 3

}

}

Once again, looking at the query, we can now see that offset is specfied as 3. We can also verify that an offset was used
by looking at id and timestamp of the two responses. The last element of the first response has id: 48232724
and timestamp_iso: "2013-11-21T11:00:51.000Z". The first element in the second response has id:
48232725 and timestamp_iso: "2013-11-29T22:59:09.472Z". You can easily verify that they are in
sequence.

1.1. WoTKit API Guides 9

http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}test/data?start=0&end=2000000000000&limit=3&offset=3

WoTKit, Release 1.6.0.SNAPSHOT

Advanced Time Range Queries

In general, using start, end, offset provides enough flexibility for most queries. However, sensors are allowed to have
multiple data on the same timestamp. This can easily happen when historical data is PUT into the system. As a result
several datapoints can have identical timestamps. What this means is that you cannot expect the timestamp value to be
unique for a sensor data.

To solve this we can use the parameters start_id and end_id for a more precise selection of start and end
elements.

We’ll start off with our first query

example
http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq-test/data?start=0&end=2000000000000&limit=4

Response

{
"numFound": 0,
"data": {
data: [

{
"id": 48232722,
"timestamp": "1385031531000",
"timestamp_iso": "2013-11-21T10:58:51.000Z",
"sensor_id": 531,
"sensor_name": "rymndhng.sdq-test",
"value": 6.7

},
{

"id": 48232723,
"timestamp": "1385031531000",
"timestamp_iso": "2013-11-21T10:59:51.000Z",
"sensor_id": 531,
"sensor_name": "rymndhng.sdq-test",
"value": 6.8

},
{

"id": 48232724,
"timestamp": "1385031651000",
"timestamp_iso": "2013-11-21T11:00:51.000Z",
"sensor_id": 531,
"sensor_name": "rymndhng.sdq-test",
"value": 6.9

},
{

"id": 48232725,
"timestamp": "1385765949472",
"timestamp_iso": "2013-11-29T22:59:09.472Z",
"sensor_id": 531,
"sensor_name": "rymndhng.sdq-test",
"valua": 81

}
],
"fields": [/*Fields*/],

},
"query": {

"start": 0,

10 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}test/data?start=0&end=2000000000000&limit=4

WoTKit, Release 1.6.0.SNAPSHOT

"limit": 4
}

}

If we want to re-run this query in the future using the information we obtained in this query we will use the last item’s
timestamp “1385765949472” (2013-11-29T22:59:09.472Z) as the start value:

Request

example
http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq-test/data?start=1385765949472&end=2000000000000&limit=4

Response

{
"numFound": 0,
"data": {
"data": [

{
"id": 48232727,
"timestamp": "1385765959633",
"timestamp_iso": "2013-11-29T22:59:19.633Z",
"sensor_id": 531,
"sensor_name": "rymndhng.sdq-test",
"valua": 0

},
{

"id": 48232728,
"timestamp": "1385765964715",
"timestamp_iso": "2013-11-29T22:59:24.715Z",
"sensor_id": 531,
"sensor_name": "rymndhng.sdq-test",
"valua": 56

},
{

"id": 48232729,
"timestamp": "1385765994862",
"timestamp_iso": "2013-11-29T22:59:54.862Z",
"sensor_id": 531,
"sensor_name": "rymndhng.sdq-test",
"value": 97

},
{

"id": 48232730,
"timestamp": "1385766024862,","
"timestamp_iso": "2013-11-29T23:00:24.862Z",
"sensor_id": 531,
"sensor_name": "rymndhng.sdq-test",
"value": 6.7

}
],
"fields": [/*Fields information*/]

},
"query": {

"start": 1385765949472,
"limit": 4

}
}

1.1. WoTKit API Guides 11

http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}test/data?start=1385765949472&end=2000000000000&limit=4

WoTKit, Release 1.6.0.SNAPSHOT

Everything looks fine doesn’t it? Although the timestamps seem incremental there is a problem we are unaware of. We
have actually skyppped an element because of the existence of duplicate timestamps. If we run the following request
querying the entire range this will become more aparent:

Request

example
http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq-test/data

Response

1 {
2 "numFound": 0,
3 "data": {
4 data: [
5 {
6 "id": 48232722,
7 "timestamp": "1385031531000",
8 "timestamp_iso": "2013-11-21T10:58:51.000Z",
9 "sensor_id": 531,

10 "sensor_name": "rymndhng.sdq-test",
11 "value": 6.7
12 },
13 {
14 "id": 48232723,
15 "timestamp": "1385031591000",
16 "timestamp_iso": "2013-11-21T10:59:51.000Z",
17 "sensor_id": 531,
18 "sensor_name": "rymndhng.sdq-test",
19 "value": 6.8
20 },
21 {
22 "id": 48232724,
23 "timestamp": "1385031651000",
24 "timestamp_iso": "2013-11-21T11:00:51.000Z",
25 "sensor_id": 531,
26 "sensor_name": "rymndhng.sdq-test",
27 "value": 6.9
28 },
29 {
30 "id": 48232725,
31 "timestamp": "1385765949472",
32 "timestamp_iso": "2013-11-29T22:59:09.472Z",
33 "sensor_id": 531,
34 "sensor_name": "rymndhng.sdq-test",
35 "valua": 81
36 },
37 { "_comment": "HIDDEN DUE TO DUPLICATE TIMESTAMP"
38 "id": 48232726,
39 "timestamp": "1385765949472",
40 "timestamp_iso": "2013-11-29T22:59:09.472Z",
41 "sensor_id": 531,
42 "sensor_name": "rymndhng.sdq-test",
43 "valua": 53
44 },
45 {
46 "id": 48232727,
47 "timestamp": "1385765959633",

12 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}test/data

WoTKit, Release 1.6.0.SNAPSHOT

48 "timestamp_iso": "2013-11-29T22:59:19.633Z",
49 "sensor_id": 531,
50 "sensor_name": "rymndhng.sdq-test",
51 "valua": 0
52 },
53 {
54 "id": 48232728,
55 "timestamp": "1385765964715",
56 "timestamp_iso": "2013-11-29T22:59:24.715Z",
57 "sensor_id": 531,
58 "sensor_name": "rymndhng.sdq-test",
59 "valua": 56
60 },
61 {
62 "id": 48232729,
63 "timestamp": "1385765994862",
64 "timestamp_iso": "2013-11-29T22:59:54.862Z",
65 "sensor_id": 531,
66 "sensor_name": "rymndhng.sdq-test",
67 "value": 97
68 },
69 {
70 "id": 48232730,
71 "timestamp": "1385766024862",
72 "timestamp_iso": "2013-11-29T23:00:24.862Z",
73 "sensor_id": 531,
74 "sensor_name": "rymndhng.sdq-test",
75 "value": 6.7
76 }
77],
78 "fields": [/*Fields information*/]
79 },
80 "query": {
81 "limit": 100,
82 "recent_n": 10
83 }
84 }

You can see that the highlighted lines for id: 48232726 did not exist in either of our previous queries. For
example, in Querying with Start and End, we performed a query for data after timestamp 1385765949472, but the
element highlighted above was not returned.

To solve this issue, use the parameter start_id. This parameter can be used in conjuction with start to specify
specify which data element’s id to start with. This works because sensor data are uniquely identified using a tuple
(timestamp, id).

Let’s rerun the second query with start_id: 48232725 from the first query.

Request

example
http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq-test/data?start=1385031651000&end=1385765994862&start_id=48232725

Response

{
"numFound": 0,
"data": {

1.1. WoTKit API Guides 13

http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}test/data?start=1385031651000&end=1385765994862&start_id=48232725

WoTKit, Release 1.6.0.SNAPSHOT

"data": [
{

"id": 48232726,
"timestamp": "1385765949472",
"timestamp": "2013-11-29T22:59:09.472Z",
"sensor_id": 531,
"sensor_name": "rymndhng.sdq-test",
"value": 53

},
{

"id": 48232727,
"timestamp": "1385765959633",
"timestamp": "2013-11-29T22:59:19.633Z",
"sensor_id": 531,
"sensor_name": "rymndhng.sdq-test",
"value": 0

},
{

"id": 48232728,
"timestamp": "1385765964715",
"timestamp": "2013-11-29T22:59:24.715Z",
"sensor_id": 531,
"sensor_name": "rymndhng.sdq-test",
"value": 56

},
{

"id": 48232729,
"timestamp": "1385765994862",
"timestamp": "2013-11-29T22:59:54.862Z",
"sensor_id": 531,
"sensor_name": "rymndhng.sdq-test",
"value": 97

}
],

"fields": [/*Fields information*/]
}
"query": {

"start": 1385765949472,
"limit": 4,
"start_id": 48232725

}
}

When we used the parameter start_id we got a response with the element whose id: 48232726‘. The start_id
allowed us to filter ids greater than 48232726. end_id works the same way as start_id if you really need fine-
grained control over the range of a data query.

Summary of Time Range Data Query

We have learned all the parameters that can be used in a sensor query. But which approach should you use?

1. Without start_id or end_id, the query range is performed like this:

start < data_ts <= end

where data_ts is the sensor data’s timestamp, and data_id is the data’s id element.

2) With start_id and/or end_id, the query range adds extra checks near the bounds like this:

14 Chapter 1. Guide

WoTKit, Release 1.6.0.SNAPSHOT

(start < data_ts <= end)
OR (data_ts = start AND data_id > start_id)
OR (data_ts = end AND data_id <= end_id)

Below is a quicky summary of what each query parameter means:

Parameter Type Description
start timestamp The absolute starting point (in milliseconds since Jan 1, 1970).
start_id id The starting id of sensor_data at timestamp start. Used for paging.
end timestamp The absolute ending timestamp (in milliseconds since Jan 1, 1970)
end_id timestamp The end id of sensor_data with timestamp end. Used for paging.

Additional Sensor Data Query Recipes

You can combine the information above in novel ways to query sensor data.

1. Use start_id instead of start for start of query

In the documentation, we used start_id alongisde start, but actually, this is optional. If you use
start_id without start, WoTKit will lookup the timestamp of the element with id start_id,
and then use that as the starting timestamp.

2. Making Start Inclusive

From Summary of Time Range Data Query, it shows the start range is exclusive. But, there is a way to
make this inclusive. If you set start_id: 0, it will make the data range inclusive.

1.2 V1 API Reference

This section contains API References for V1 of WoTKit’s API. In addition to the documentation posted here, our API
can be explored using Swagger with the following URL http://wotkit.sensetecnic.com/api/v1/api-docs?path=v1.

1.2.1 Authentication

The WoTKit API supports three forms of authentication to control access to a user’s sensors and other information on
the WoTKit.

1. Basic authentication using the user’s name and password

2. Basic authentication with Keys (key id and key password)

3. OAuth2 authorization of server-based Applications

Using the WoTKit portal, developers can create keys for use by one or more sensor gateways or scripts. Users can also
register new server side applications and then authorize these applications to allow them to access a user’s sensors on
their behalf.

Note: Most examples in this document use basic authentication with keys or WoTKit username and passwords.
However, OAuth2 authorization is also possible by removing the id and password and by appending an access_token
parameter. See Registered Applications and OAuth2 for details.

1.2. V1 API Reference 15

http://wotkit.sensetecnic.com/api/v1/api-docs?path=v1

WoTKit, Release 1.6.0.SNAPSHOT

Methods privacy

Some API methods are private and will return an HTTP status code of 403 Forbidden if accessed without authenticating
the request, while others are completely private or are restricted to certain users. (Currently only system administrators
have access to ALL methods),

Every method has a description of its private level in one of the following forms:

• Public accessible to all

• Private accessible only to authenticated users

• Public or Private accessible to all, but might return different results to authenticated users.

– Example of different results is the “get sensors” method, which might return a user’s private sensors when
the method is called as an authenticated user.

• Admin accessible only to authenticated admin users

Keys and Basic Authentication

Keys are created on the WoTKit UI (http://wotkit.sensetecnic.com/wotkit/keys) and are unique to each user.

To grant a client access to your sensors, you can create a key. The client can then be supplied the auto-generated ‘key
id’ and ‘key password’. These will act as username and password credentials, using basic authentication to access
sensors on the user’s behalf.

For instance, the following curl command uses a ‘key id’ and ‘key password’ to get information about the sensor
sensetecnic.mule1.

Note: Replace the {key_id} and {key_password} in the code below with your own generated keys. To generate
them visit the WoTKit UI at http://wotkit.sensetecnic.com/wotkit/keys, click on New API Key, after filling form with
Key Name and Key Description to track your keys you will be presented with the values you can use.

example
curl --user {key_id}:{key_password}
``http://wotkit.sensetecnic.com/api/v1/sensors/sensetecnic.mule1``

This returns:

{
"name":"mule1",
"fields":[
{"name":"lat","value":49.20532,"type":"NUMBER","index":0,
"required":true,"longName":"latitude","lastUpdate":"2012-12-07T01:47:18.639Z"},
{"name":"lng","value":-123.1404,"type":"NUMBER","index":1,
"required":true,"longName":"longitude","lastUpdate":"2012-12-07T01:47:18.639Z"},
{"name":"value","value":58.0,"type":"NUMBER","index":2,
"required":true,"longName":"Data","lastUpdate":"2012-12-07T01:47:18.639Z"},
{"name":"message","type":"STRING","index":3,
"required":false,"longName":"Message"}

],
"id":1,
"visibility":PUBLIC,
"owner":"sensetecnic",
"description":"A big yellow taxi that travels from

Vincent's house to UBC and then back.",
"longName":"Big Yellow Taxi",

16 Chapter 1. Guide

http://wotkit.sensetecnic.com/wotkit/keys
http://wotkit.sensetecnic.com/wotkit/keys
http://wotkit.sensetecnic.com/api/v1/sensors/sensetecnic.mule1

WoTKit, Release 1.6.0.SNAPSHOT

"latitude":51.060386316691,
"longitude":-114.087524414062,
"lastUpdate":"2012-12-07T01:47:18.639Z"}

}

Registered Applications and OAuth2

Applications registered with the WoTKit UI (http://wotkit.sensetecnic.com/wotkit/apps) provide an easy way to allow
several clients access to a WoTKit’s user data. A common scenario is when a developer creates an application that
publishes data on behalf of other WoTKit users.

For example, to grant a third-party client access to your sensors, you first register an application. The client can then
be supplied the ‘application client id’ and auto-generated ‘application secret’. These will act as credentials, allowing
clients to access the WoTKit on your behalf, using OAuth2 authorization. You can always delete the application and
revoke access to any clients using the generated oauth credentials.

In more detail, an OAuth2 authorization will ask the user’s permission for a client to utilize the application credentials
on the user’s behalf. If the user allows this, an access token is generated. This access token can then be appended to
the end of each WoTKit URL. In this case no further id/passwords are needed.

For instance, the following curl command uses an access token to get information about the sensor sensetecnic.mule1.

Note: Replace the {access_token} the request below with your own generated access token as explained below

example
curl ``http://wotkit.sensetecnic.com/api/v1/sensors/sensetecnic.mule1?access_token={access_token}``

In order to obtain an access token a client must follow the following steps, which follow the oauth2 specification
(http://oauth.net/2/).

1. An attempt to access the WoTKit is made by providing an ‘application client id’ and requesting a code. This
can be obtained

http://wotkit.sensetecnic.com/api/oauth/authorize?client_id={application
client id}&response_type=code&redirect_uri={redirect_uri}

2. If no user is currently logged in to the WoTKit, a login page will be presented. A WoTKit user must log in to
continue.

3. A prompt asks the user to authorize the ‘application client id’ to act on their behalf. Once authorized, a code is
provided.

4. The user is redirected to a redirect_uri that obtains an access token that can be appended to the end of each URL
to perform queries on behalf of the user.

Note: An application’s Client ID and Application Secret can be found at after you have created an application in the
WoTKit UI: http://wotkit.sensetecnic.com/wotkit/apps/‘{application-id}

The following example in PHP exemplifies the flow explained above. The example below is deployed at a {redi-
rect_uri} that is pointed to by the WoTKit after the request in (1) above is made.

<?php
$code = $_GET['code'];
$access_token = "none";
$ch = curl_init();

1.2. V1 API Reference 17

http://wotkit.sensetecnic.com/wotkit/apps
http://wotkit.sensetecnic.com/api/v1/sensors/sensetecnic.mule1?access_token=\protect \T1\textbraceleft access_token\protect \T1\textbraceright
http://oauth.net/2/
http://wotkit.sensetecnic.com/wotkit/apps/{}`\protect \T1\textbraceleft application-id\protect \T1\textbraceright

WoTKit, Release 1.6.0.SNAPSHOT

if(isset($code)) {
// try to get an access token
$params = array("code" => $code,

"client_id"=> {application client id},
"client_secret" => {application secret},
"redirect_uri" => {redirect uri},
"grant_type" => "authorization_code");

$data = ArraytoNameValuePairs ($params);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_URL, "http://wotkit.sensetecnic.com/api/oauth/token");
curl_setopt($ch, CURLOPT_POST, TRUE);
curl_setopt($ch, CURLOPT_POSTFIELDS, $data);

$access_token = json_decode($response)->access_token;
}

?>

Access Token Facts

When obtaining an access token, the ‘response’ field holds the access token required by an application to make future
requests on behalf of a user:

• response->access_token

• response->expires_in

Note: The default value of response->expires_in is approx. 43200 seconds (or 12 hrs)

Smart Streets Authentication

The WoTKit API for Smart Streets supports basic authentication using user name and password, WoTKit keys, as well
as a developer key. Note that Smart Streets does not support OAuth2.

1.2.2 Error Reporting

Errors are reported with an HTTP status code accompanied by an error JSON object. The object contains the status,
an internal error code, user-displayable message, and an internal developer message.

For example, when a sensor cannot be found, the following error is returned:

HTTP/1.1 404 Not Found

{
"error": {

"status": 404,
"code": 0,
"message": "No thing with that id or name",
"developerMessage": ["my_sensor"]

}
}

18 Chapter 1. Guide

WoTKit, Release 1.6.0.SNAPSHOT

1.2.3 Sensors

A sensor represents a physical or virtual sensor or actuator. It contains a data stream made up of fields.

A sensor has the following attributes:

Name Value Description
id the numeric id of the sensor. This may be used in the

API in place of the sensor name.
name **

the name of the sensor.
Note that the global name is
{username}.{sensorname}.
When logged in as a the owner, you can refer to
the sensor using only {sensorname}.
To access a public sensor created by another user,
you can refer to it by its numeric id or the global
name, {username}.{sensorname}.

description ** a description of the sensor for text searches.
longName ** longer display name of the sensor.
url DEPRECATED
latitude

the latitude location of the sensor in degrees. This is
a static location used for locating sensors on a
map and for location-based queries. (Dynamic lo-
cation (e.g. for mobile sensors) is in the lat and
lng fields of sensor data.)

longitude
the longitude location of the sensor in degrees. This

is a static location used for locating sensors on
a map and for location-based queries. (Dynamic
location (e.g. for mobile sensors) is in the lat and
lng fields of sensor data.)

lastUpdate
last update time in milliseconds. This is the last time

sensor data was recorded, or an actuator script
polled for control messages.

visibility

PUBLIC: The sensor is publicly visible
PRIVATE: The sensor is only visible to the owner. In
any case posting data to the sensor is restricted to the
sensor’s owner.

owner the owner of the sensor
fields the expected data fields, their type (number or string),

units and if available, last update time and value. (For
more info: Sensor Fields)

tags the list of tags for the sensor (For more info: Tags)
data sensor data (not shown yet)

** Required when creating a new sensor.

1.2. V1 API Reference 19

WoTKit, Release 1.6.0.SNAPSHOT

Querying Sensors

A list of matching sensors may also be queried by the system.

The current query parameters are as follows:

Name Value Description
scope

all - all sensors the current user has access to
subscribed - the sensors the user has subscribed to |
contributed - the sensors the user has contributed to
the system.

metadata
a key:value metadata pair

Example: metadata=appliance:toaster

tags list of comma separated tags
orgs list of comma separated organization names
private DEPRECATED, use visibility instead. (true - private

sensors only; false - public only‘).
visibility filter by the visibility of the sensors, either of public, or

private
text text to search for in the name, long name and description
active when true it returns sensors that have been updated in

the last 15 minutes; when false it returns sensors that
have not been updated in the last 15 minutes.

offset offset into list of sensors for paging
limit limit to show for paging. The maximum number of sen-

sors to display is 1000.
location

geo coordinates for a bounding box to search within.

Format is yy.yyy,xx.xxx:yy.yyy,xx.xxx, and the
order of the coordinates are
North,West:South,East.
Example:
location=56.89,-114.55:17.43,-106.219

Note: If active is ommited the query will not evaluate if a sensor has, or has not, been updated in the last 15 minutes.

To query for sensors, add query parameters after the sensors URL as follows:

20 Chapter 1. Guide

WoTKit, Release 1.6.0.SNAPSHOT

URL http://wotkit.sensetecnic.com/api/v1/sensors?{query}
Pri-
vacy

Public or Private

For-
mat

json

Method GET
Re-
turns

200 OK if successful. A JSON object in the response body containing a list of sensor descriptions
matching the query.

example
curl --user {id}:{password}
``http://wotkit.sensetecnic.com/api/v1/sensors?tags=canada``

Output:

[
{
"id": 71,
"name": "api-data-test",
"longName": "api-data-test",
"description": "api-data-test",
"tags": [
"canada",
"data",
"winnipeg"

],
"latitude": 0,
"longitude": 0,
"visibility": "PUBLIC",
"owner": "sensetecnic",
"lastUpdate": "2013-03-09T03:12:35.438Z",
"created": "2013-07-01T23:17:37.000Z",
"subscriberNames": [],
"fields": [
{

"name": "lat",
"longName": "latitude",
"type": "NUMBER",
"index": 0,
"required": false,
"value": 0

},
{

"name": "lng",
"longName": "longitude",
"type": "NUMBER",
"index": 1,
"required": false,
"value": 0

},
{

"name": "value",
"longName": "Data",

1.2. V1 API Reference 21

http://wotkit.sensetecnic.com/api/v1/sensors?\protect \T1\textbraceleft query\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v1/sensors?tags=canada

WoTKit, Release 1.6.0.SNAPSHOT

"type": "NUMBER",
"index": 2,
"required": true,
"value": 5,
"lastUpdate": "2013-03-09T03:12:35.438Z"

},
{

"name": "message",
"longName": "Message",
"type": "STRING",
"index": 3,
"required": false,
"value": "hello",
"lastUpdate": "2013-03-09T03:12:35.438Z"

}
],
"publisher": "sensetecnic",
"thingType": "SENSOR"

}
]

Viewing a Single Sensor

To view a single sensor, query the sensor by sensor name or id as follows:

URL http://wotkit.sensetecnic.com/api/v1/sensors/{sensorname}
Privacy Public or Private
Format json
Method GET
Returns 200 OK if successful. A JSON object in the response body describing a sensor.

example
curl --user {id}:{password}
``http://wotkit.sensetecnic.com/api/v1/sensors/sensetecnic.mule1``

Output:

{
"id": 1,
"name": "mule1",
"longName": "Yellow Taxi 2",
"description": "A big yellow taxi that travels from Vincent's house to UBC and then back.",
"tags": [
"gps",
"taxi"

],
"imageUrl": "",
"latitude": 51.06038631669101,
"longitude": -114.087524414062,
"visibility": "PUBLIC",
"owner": "sensetecnic",

22 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v1/sensors/\protect \T1\textbraceleft sensorname\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v1/sensors/sensetecnic.mule1

WoTKit, Release 1.6.0.SNAPSHOT

"lastUpdate": "2014-06-19T22:45:36.556Z",
"created": "2013-07-01T23:17:37.000Z",
"subscriberNames": [
"mike",
"fred",
"nhong",
"smith",
"roseyr",
"mitsuba",
"rymndhng",
"lchyuen",
"test",
"lesula"

],
"metadata": {},
"fields": [
{

"name": "lat",
"longName": "latitude",
"type": "NUMBER",
"index": 0,
"units": "degrees",
"required": false,
"value": 49.22288,
"lastUpdate": "2014-04-28T16:20:23.891Z"

},
{

"name": "lng",
"longName": "longitude",
"type": "NUMBER",
"index": 1,
"units": "degrees",
"required": false,
"value": -123.16246,
"lastUpdate": "2014-04-28T16:20:23.891Z"

},
{

"name": "value",
"longName": "Speed",
"type": "NUMBER",
"index": 2,
"units": "km/h",
"required": true,
"value": 10,
"lastUpdate": "2014-06-19T22:45:36.281Z"

},
{

"name": "message",
"longName": "Message",
"type": "STRING",
"index": 3,
"required": false

}
],
"publisher": "sensetecnic",
"thingType": "SENSOR"

}

1.2. V1 API Reference 23

WoTKit, Release 1.6.0.SNAPSHOT

Creating/Registering a Sensor

The sensor resource is a JSON object. To register a sensor, you POST a sensor resource to the url /sensors.

To create a sensor the API end-point is:

URL http://wotkit.sensetecnic.com/api/v1/sensors
Pri-
vacy

Private

For-
mat

json

Method POST
Re-
turns

201 Created if successful; 400 Bad Request if sensor is invalid; 409 Conflict if sensor with the same
name already exists.

The JSON object has the following fields:

Field
Name

Information

(RE-
QUIRED)

name The unique name for the sensor field. It is required when creating/updating/deleting a field
and cannot be changed. The sensor name must be at least 4 characters long, contain only
lowercase letters, numbers, dashes and underscores, and can start with a lowercase letter or
an underscore only.

(RE-
QUIRED)

long-
Name

The display name for the field. It is required when creating/updating/deleting a field and can
be changed.

(OP-
TIONAL)

lati-
tude

The GPS latitude position of the sensor, it will default to 0 if not provided.

(OP-
TIONAL)

longi-
tude

The GPS longitude position of the sensor, it will default to 0 if not provided.

(OP-
TIONAL)

visibil-
ity

It will default to “PRIVATE” if not provided (even when updating a sensor).

(OP-
TIONAL)

tags A list of tags for the sensor (For more info: Tags)

(OP-
TIONAL)

fields A fields object in the format {"name":"test-field","type":"STRING"} (For
more info: Sensor Fields)

example
curl --user {id}:{password} --request POST --header ``Content-Type: application/json''
--data-binary @test-sensor.txt `http://wotkit.sensetecnic.com/api/v1/sensors`

For this example, the file test-sensor.txt contains the following.

{
"visibility":"PUBLIC",
"name":"taxi-cab",
"longName":"taxi-cab"
"description":"A big yellow taxi.",
"longName":"Big Yellow Taxi",
"latitude":51.060386316691,
"longitude":-114.087524414062

}

24 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v1/sensors
http://wotkit.sensetecnic.com/api/v1/sensors

WoTKit, Release 1.6.0.SNAPSHOT

Creating/Registering multiple Sensors

To register multiple sensors, you PUT a list of sensor resources to the url /sensors.

• The sensor resources is a JSON list of objects as described in Creating/Registering a Sensor.

• Limited to 100 new sensors per call. (subject to change)

URL http://wotkit.sensetecnic.com/api/v1/sensors
Pri-
vacy

Private

For-
mat

json

MethodPUT
Re-
turns

201 Created if successful; 400 Bad Request if sensor is invalid; 409 Conflict if sensor with the same
name already exists ; 201 Created and a JSON object in the response body describing a dictionary where
the keys are the sensor names and the values are true/false depending on whether creating the sensor
succeeded.

Updating a Sensor

Updating a sensor is the same as registering a new sensor other than PUT is used and the sensor name or id is included
in the URL.

Note that all top level fields supplied will be updated.

• You may update any fields except “id”, “name” and “owner”.

• Only fields that are present in the JSON object will be updated.

• If “tags” list or “fields” list are included, they will replace the existing lists.

• If “visibility” is hardened (that is, the access to the sensor becomes more restrictive) then all currently subscribed
users are automatically unsubscribed, regardless of whether they can access the sensor after the change.

To update a sensor owned by the current user:

URL http://wotkit.sensetecnic.com/api/v1/sensors/{sensorname}
Privacy Private
Format json
Method PUT
Returns 204 No Content if successful.

For instance, to update a sensor description and add tags:

example
curl --user {id}:{password} --request PUT
--header ``Content-Type: application/json''
--data-binary @update-sensor.txt
`http://wotkit.sensetecnic.com/api/v1/sensors/taxi-cab`

The file update-sensor.txt would contain the following:

1.2. V1 API Reference 25

http://wotkit.sensetecnic.com/api/v1/sensors
http://wotkit.sensetecnic.com/api/v1/sensors/\protect \T1\textbraceleft sensorname\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v1/sensors/taxi\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}cab

WoTKit, Release 1.6.0.SNAPSHOT

{
"visibility":"PUBLIC",
"name":"taxi-cab",
"description":"A big yellow taxi. Updated description",
"longName":"Big Yellow Taxi",
"latitude":51.060386316691,
"longitude":-114.087524414062,
"tags": ["big", "yellow", "taxi"]

}

Deleting a Sensor

Deleting a sensor is done by deleting the sensor resource through a DELETE request.

To delete a sensor owned by the current user:

URL http://wotkit.sensetecnic.com/api/v1/sensors/{sensorname}
Privacy Private
Format not applicable
Method DELETE
Returns 204 No Content if successful.

example
curl --user {id}:{password} --request DELETE
`http://wotkit.sensetecnic.com/api/v1/sensors/test-sensor`

1.2.4 Sensor Subscriptions

Sensor subscriptions are handled using the /subscribe URL.

Get Sensor Subscriptions

To view sensors that the current user is subscribed to:

URL http://wotkit.sensetecnic.com/api/v1/subscribe
Privacy Private
Format json
Method GET
Returns 200 OK if successful. A JSON object in the response body containing sensors subscribed by the user.

26 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v1/sensors/\protect \T1\textbraceleft sensorname\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v1/sensors/test\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}sensor
http://wotkit.sensetecnic.com/api/v1/subscribe

WoTKit, Release 1.6.0.SNAPSHOT

Subscribe

To subscribe to a non-private sensor or private sensor owned by the current user:

URL http://wotkit.sensetecnic.com/api/v1/subscribe/{sensorname}
Privacy Private
Format json
Method PUT
Returns 204 No Content if successful.

Unsubscribe

To unsubscribe from a sensor:

URL http://wotkit.sensetecnic.com/api/v1/subscribe/{sensorname}
Privacy Private
Format json
Method DELETE
Returns 204 No Content if successful.

1.2.5 Sensor Fields

Sensor fields are the fields of data saved in a sensor stream. Together they make up the sensor schema. Sensor data
objects must follow declared fields.

Each sensor has the following default fields:

Field Name Information
(OPTIONAL) value The numerical data for the sensor.
(OPTIONAL) lat The latitude of the sensor.
(OPTIONAL) lng The longitude of the sensor.
(OPTIONAL) message The string message for the sensor.

Additional fields can be added. Each new field consists of the following:

1.2. V1 API Reference 27

http://wotkit.sensetecnic.com/api/v1/subscribe/\protect \T1\textbraceleft sensorname\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v1/subscribe/\protect \T1\textbraceleft sensorname\protect \T1\textbraceright

WoTKit, Release 1.6.0.SNAPSHOT

Field Name Information
name
(REQUIRED)

The unique name for the sensor field. Required when creating/updating/deleting a field and
cannot be changed.

longName
(REQUIRED)

The display name for the field. Required when creating/updating/deleting a field and can be
changed.

type
(REQUIRED)

Can be “NUMBER” or “STRING”. Required when creating/updating a field.

required
(OPTIONAL)

Is a boolean field. If true, data sent to a sensor must include this field or an error will result.

units
(OPTIONAL)

A string to identify the units to represent data.

index
(READ-ONLY)

The numerical index of the field used to maintain ordering. This field is automatically
generated by the system and is read only.

value
(READ-ONLY)

The last value of this sensor field received by the sensor when sending data. This is a read
only field set when the sensor receives data for this field.

lastUpdate
(READ-ONLY)

The time stamp of the last value sent to the field. This is a read only field set when the sensor
receives data for this field.

Querying Sensor Fields

To retrieve the sensor fields for a specific sensor:

URL http://wotkit.sensetecnic.com/api/v1/sensors/{sensorname}/fields
Pri-
vacy

Public or Private

For-
mat

json

Method GET
Re-
turns

200 OK if successful. A JSON object in the response body containing the fields of the sensor is returned
in the body of the response.

To query a single sensor field for a specific sensor:

URL http://wotkit.sensetecnic.com/api/v1/sensors/{sensorname}/fields/{fieldName}
Pri-
vacy

Public or Private

For-
mat

json

Method GET
Re-
turns

200 OK if successful. A JSON object in the response body describing the field is returned in the body
of the response.

28 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v1/sensors/\protect \T1\textbraceleft sensorname\protect \T1\textbraceright /fields
http://wotkit.sensetecnic.com/api/v1/sensors/\protect \T1\textbraceleft sensorname\protect \T1\textbraceright /fields/\protect \T1\textbraceleft fieldName\protect \T1\textbraceright

WoTKit, Release 1.6.0.SNAPSHOT

Updating a Sensor Field

You can update or add a sensor field by performing a PUT operation to the specified field. The field information is
supplied in a JSON format.

If the sensor already has a field with the given name, it will be updated with new information. Otherwise, a new field
with that name will be created.

Notes:

• When inputting field data, the sub-fields “name” and “type” are required-both for adding a new field or updating
an existing one.

• Read only sub-fields such as index, value and lastUpdate should not be supplied.

• The “name” sub-field of an existing field cannot be updated.

• For user defined fields, the “longName”, “type”, “required”, and “units” sub-fields may be updated.

• You cannot change the index of a field. If a field is deleted, the index of the following fields will be adjusted to
maintain the field order.

To update/add a sensor field:

URL http://wotkit.sensetecnic.com/api/v1/sensors/{sensorname}/fields/{fieldname}
Privacy Private
Format json
Method PUT
Returns 204 No Content if successful.

For instance, to create a new field called “test-field”:

example
curl --user {id}:{password} --request PUT
--header ``Content-Type: application/json'' --data-binary @field-data.txt
`http://wotkit.sensetecnic.com/api/v1/sensors/test-sensor/fields/test-field`

The file field-data.txt could contain the following. (Note that this is the minimal information needed to create a new
field.)

{
"name":"test-field",
"type":"STRING"

}

To then update “test-field” sub-fields, the curl command would be used to send a PUT request.

example
curl --user {id}:{password} --request PUT
--header ``Content-Type: application/json'' --data-binary @field-data.txt
`http://wotkit.sensetecnic.com/api/v1/sensors/test-sensor/fields/test-field`

And ‘’field-data.txt” could now contain the following.

1.2. V1 API Reference 29

http://wotkit.sensetecnic.com/api/v1/sensors/\protect \T1\textbraceleft sensorname\protect \T1\textbraceright /fields/\protect \T1\textbraceleft fieldname\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v1/sensors/test\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}sensor/fields/test\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}field
http://wotkit.sensetecnic.com/api/v1/sensors/test\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}sensor/fields/test\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}field

WoTKit, Release 1.6.0.SNAPSHOT

{
"name":"test-field",
"type":"NUMBER",
"longName":"Test Field",
"required":true,
"units":"mm"

}

Deleting a Sensor Field

You can delete an existing sensor field by performing a DELETE and including the field name in the URL.

To delete a sensor field:

URL http://wotkit.sensetecnic.com/api/v1/sensors/{sensorname}/fields/{fieldname}
Privacy Private
Format n/a
Method DELETE
Returns 204 No Content if successful.

1.2.6 Sensor Data

In the WoTKit, sensor data consists of a timestamp followed by one or more named fields. There are a number of
reserved fields supported by the WoTKit:

Reserved
field name

Description

(OP-
TIONAL)

timestamp the time that the sensor data was collected. This is an ISO 8601 timestamp (for example
Jan 1, 1970 UTC in ISO 8601: 1970-01-01T00:00:00Z) Optional; if not supplied, a
server-supplied timestamp will be used.

(READ-
ONLY)

id a unique identifier for the data reading. This is to distinguish one reading from another
when they share the same timestamp. This field is read only and should not be sent by
the client when sending new data.

(READ-
ONLY)

sensor_id the globally unique sensor id that produced the data. This is a read only field generated
by the wotkit that should not be sent by a client when sending new data.

(READ-
ONLY)

sen-
sor_name

the globally unique sensor name, in the form {username}.{sensorname}. This is
a read only field and should not be sent by the client when sending new data.

When a new sensor is created, a number of default fields are created by the wotkit for a sensor as follows. Note that
these can be changed by editing the sensor fields.

30 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v1/sensors/\protect \T1\textbraceleft sensorname\protect \T1\textbraceright /fields/\protect \T1\textbraceleft fieldname\protect \T1\textbraceright

WoTKit, Release 1.6.0.SNAPSHOT

Default field
name

Description

lat the current latitude location of the sensor in degrees (number). Needed for map
visualizations.

lng the current longitude location of the sensor in degrees (number). Needed for map
visualizations.

value the primary value of the sensor data collected (number). Needed for most visualizations.
message a text message, for example a twitter message (text). Needed for text/newsfeed

visualizations.

In addition to these reserved fields, additional required or optional fields can be added by updating the sensor fields in
the WoTKit UI or Sensor Fields in the API.

Note: Remember that * Python’s time.time() function generates the system time in seconds, not milliseconds. To
convert this to an integer in milliseconds use int(time.time()*1000). Using Java you can obtain the timestam
in milliseconds via System.currentTime().

Sending New Data

To send new data to a sensor, POST name value pairs corresponding to the data fields to the
/sensors/{sensorname}/data URL.

Any fields marked as required must be provided, or an error will be returned. There is no need to provide a timestamp
since it will be assigned by the server. Data posted to the system will be processed in real time.

Note: When sending name value pairs that are not specified by the sensor’s fields the server will save the data without
a type. When adding a new field after sending this data WoTKit will make an attempt to cast the recorded data to the
type specified by the new field.

To send new data:

URL http://wotkit.sensetecnic.com/api/v1/sensors/{sensorname}/data
Privacy Private
Format json or x-www-form-urlencoded
Method POST
Returns 201 Created if successful.

You can POST data as either application/json or appliction/x-www-form-urlencoded.

An example of POSTing using www-form-urlencoded data would be:

example
curl --user {username}:{password} --request POST
-d value=5 -d lng=6 -d lat=7 `http://wotkit.sensetecnic.com/api/v1/sensors/{username}.{sensorname}/data`

The same example using JSON would be:

1.2. V1 API Reference 31

http://wotkit.sensetecnic.com/api/v1/sensors/\protect \T1\textbraceleft sensorname\protect \T1\textbraceright /data
http://wotkit.sensetecnic.com/api/v1/sensors/\protect \T1\textbraceleft username\protect \T1\textbraceright .\protect \T1\textbraceleft sensorname\protect \T1\textbraceright /data

WoTKit, Release 1.6.0.SNAPSHOT

example
curl --user {username}:{password} --request POST -H `Content-Type: application/json'
-d `{``value'':5, ``lng'':6, ``lat'':7}' `http://wotkit.sensetecnic.com/api/v1/sensors/{username}.{sensorname}/data`

Sending Bulk Data

To send a range of data, you PUT data (rather than POST) data into the system.

• The data sent must contain a list of JSON objects, any fields marked as required in the sensor fields must be
contained in each JSON object.

• If providing a single piece of data, existing data with the provided timestamp will be deleted and replaced.
Otherwise, the new data will be added.

• If providing a range of data, any existing data within this timestamp range will be deleted and replaced by the
new data.

Note: The data sent does not require a timestamp. If the timestamp is omitted WoTKit will use the current server
time. Again, any fields marked as required must be provided.

To update data:

URL http://wotkit.sensetecnic.com/api/v1/sensors/{username}.{sensorname}/data
Privacy Private
Format json
Method PUT
Returns

****HTTP status code; No Response 204 if successful

Example of valid data:

[{"timestamp":"2012-12-12T03:34:28.626Z","value":67.0,"lng":-123.1404,"lat":49.20532},
{"timestamp":"2012-12-12T03:34:28.665Z","value":63.0,"lng":-123.14054,"lat":49.20554},
{"timestamp":"2012-12-12T03:34:31.621Z","value":52.0,"lng":-123.14063,"lat":49.20559},
{"timestamp":"2012-12-12T03:34:35.121Z","value":68.0,"lng":-123.14057,"lat":49.20716},
{"timestamp":"2012-12-12T03:34:38.625Z","value":51.0,"lng":-123.14049,"lat":49.20757},
{"timestamp":"2012-12-12T03:34:42.126Z","value":55.0,"lng":-123.14044,"lat":49.20854},
{"timestamp":"2012-12-12T03:34:45.621Z","value":56.0,"lng":-123.14215,"lat":49.20855},
{"timestamp":"2012-12-12T03:34:49.122Z","value":55.0,"lng":-123.14727,"lat":49.20862},
{"timestamp":"2012-12-12T03:34:52.619Z","value":59.0,"lng":-123.14765,"lat":49.20868}]

example

32 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v1/sensors/\protect \T1\textbraceleft username\protect \T1\textbraceright .\protect \T1\textbraceleft sensorname\protect \T1\textbraceright /data
http://wotkit.sensetecnic.com/api/v1/sensors/\protect \T1\textbraceleft username\protect \T1\textbraceright .\protect \T1\textbraceleft sensorname\protect \T1\textbraceright /data

WoTKit, Release 1.6.0.SNAPSHOT

curl --user {username}:{password} --request PUT -H ``Content-Type: application/json'' --data-binary @data.txt `http://wotkit.sensetecnic.com/api/v1/sensors/{username}.{sensorname}/data`

where data.txt contains JSON data similar to the above JSON array.

Deleting Data

Currently you can only delete data by timestamp, where timestamp is in numeric or ISO form. Note that if more than
one sensor data point has the same timestamp, they all will be deleted.

To delete data:

URL http://wotkit.sensetecnic.com/api/v1/sensors/{sensorname}/data/{timestamp}
Privacy Private
Format n/a
Method DELETE
Returns 204 No Content if successful.

Raw Data Retrieval

To retrieve raw data use the following:

URL http://wotkit.sensetecnic.com/api/v1/sensors/{sensor-name}/data?{query-params}
Privacy Public or Private
Format json
Method GET
Returns 200 OK on success. A JSON object in the response body containing a list of timestamped data records.

The query parameters supported are the following:

Name Value Description
start the absolute start time of the range of data selected in milliseconds. (Defaults to current time.) May only

be used in combination with another parameter.
end the absolute end time of the range of data in milliseconds
after the relative time after the start time, e.g. after=300000 would be 5 minutes after the start time (Start time

MUST also be provided.)
af-
terE

the number of elements after the start element or time. (Start time MUST also be provided.)

be-
fore

the relative time before the start time. E.g. data from the last hour would be before=3600000 (If not
provided, start time default to current time.)

be-
foreE

the number of elements before the start time. E.g. to get the last 1000, use beforeE=1000 (If not
provided, start time default to current time.)

re-
verse

true: order the data from newest to oldest; false (default):order from oldest to newest

1.2. V1 API Reference 33

http://wotkit.sensetecnic.com/api/v1/sensors/\protect \T1\textbraceleft username\protect \T1\textbraceright .\protect \T1\textbraceleft sensorname\protect \T1\textbraceright /data
http://wotkit.sensetecnic.com/api/v1/sensors/\protect \T1\textbraceleft sensorname\protect \T1\textbraceright /data/\protect \T1\textbraceleft timestamp\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v1/sensors/\protect \T1\textbraceleft sensor-name\protect \T1\textbraceright /data?\protect \T1\textbraceleft query-params\protect \T1\textbraceright

WoTKit, Release 1.6.0.SNAPSHOT

Note: These queries looks for timestamps > “start” and timestamps <= “end”

Formatted Data Retrieval

To retrieve data in a format suitable for Google Visualizations, we support an additional resource for retrieving data
called dataTable.

URL http://wotkit.sensetecnic.com/api/v1/sensors/{sensor-name}/dataTable?{query-params}
Pri-
vacy

Public or Private

For-
mat

json

Method GET
Re-
turns

200 OK on success. A formatted JSON object in the response body containing a list of timestamped
data records.

This resource is similar to Raw Data Retrieval, but adds two parameters: tqx and tq. You can read more about these
parameters at the specification document: Chart Tools Datasource Protocol.

The complete list of available parameters is:

Name Value Description
start the absolute start time of the range of data selected in milliseconds. (Defaults to current time.) May only

be used in combination with another parameter.
end the absolute end time of the range of data in milliseconds
after the relative time after the start time, e.g. after=300000 would be 5 minutes after the start time (Start time

MUST also be provided.)
af-
terE

the number of elements after the start element or time. (Start time MUST also be provided.)

be-
fore

the relative time before the start time. E.g. data from the last hour would be before=3600000 (If not
provided, start time default to current time.)

be-
foreE

the number of elements before the start time. E.g. to get the last 1000, use beforeE=1000 (If not
provided, start time default to current time.)

re-
verse

true: order the data from newest to oldest; false (default):order from oldest to newest

tqx A set of colon-delimited key/value pairs for standard parameters, defined here.
tq A SQL clause to select and process data fields to return, explained here.

Note: When using tq sql queries, they must be url encoded. When using tqx name/value pairs, the reqId parameter is
necessary.

For instance, the following would take the “sensetecnic.mule1”, select all data where value was greater than 20, and
display the output as an html table.

example

34 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v1/sensors/\protect \T1\textbraceleft sensor-name\protect \T1\textbraceright /dataTable?\protect \T1\textbraceleft query-params\protect \T1\textbraceright
https://developers.google.com/chart/interactive/docs/dev/implementing_data_source#requestformat
https://developers.google.com/chart/interactive/docs/dev/implementing_data_source#requestformat
https://developers.google.com/chart/interactive/docs/querylanguage

WoTKit, Release 1.6.0.SNAPSHOT

curl --user {username}:{password} http://wotkit.sensetecnic.com/api/v1/sensors/sensetecnic.mule1/
dataTable?tq=select%20*%20where%20value%3E20

The following combines SQL filtering and formatting with a range to output the last 100 elements of the sensor where
the value is greater than 55, formated using HTML:

example
curl --user {username}:{password} http://wotkit.sensetecnic.com/api/v1/sensors/sensetecnic.mule1/dataTable?tq=select%20*%20where%20value%3E55&tqx=out:html&beforeE=1000

An example response, limited to the last 5 elements will return 3 elements, in the form:

google.visualization.Query.setResponse (
{
"version": "0.6",
"status": "ok",
"sig": "582888298",
"table": {
"cols": [

{
"id": "sensor_id",
"label": "Sensor Id",
"type": "number",
"pattern": ""

},
{

"id": "sensor_name",
"label": "Sensor Name",
"type": "string",
"pattern": ""

},
{

"id": "timestamp",
"label": "Timestamp",
"type": "datetime",
"pattern": ""

},
{

"id": "lat",
"label": "latitude",
"type": "number",
"pattern": ""

},
{

"id": "lng",
"label": "longitude",
"type": "number",
"pattern": ""

1.2. V1 API Reference 35

http://wotkit.sensetecnic.com/api/v1/sensors/sensetecnic.mule1/ dataTable?tq=select%20*%20where%20value%3E20
http://wotkit.sensetecnic.com/api/v1/sensors/sensetecnic.mule1/ dataTable?tq=select%20*%20where%20value%3E20
http://wotkit.sensetecnic.com/api/v1/sensors/sensetecnic.mule1/dataTable?tq=select%20*%20where%20value%3E55&tqx=out:html&beforeE=1000

WoTKit, Release 1.6.0.SNAPSHOT

},
{

"id": "value",
"label": "Speed",
"type": "number",
"pattern": ""

},
{

"id": "message",
"label": "Message",
"type": "string",
"pattern": ""

}
],
"rows": [

{
"c":[
{"v":1.0},
{"v":"sensetecnic.mule1"},
{"v":new Date(2014,3,28,16,20,13)},
{"v":49.22522},{"v":-123.166},
{"v":66.0},{"v":null}

]
},
{

"c":[
{"v":1.0},
{"v":"sensetecnic.mule1"},
{"v":new Date(2014,3,28,16,20,16)},
{"v":49.22422},
{"v":-123.16398},
{"v":58.0},
{"v":null}

]
},

{
"c":[
{"v":1.0},
{"v":"sensetecnic.mule1"},
{"v":new Date(2014,3,28,16,20,20)},
{"v":49.22307},
{"v":-123.16276},
{"v":58.0},
{"v":null}

]
}

],
"p": {

"lastId": "2014-06-19T22:45:36.281Z"
}

}
}
)

36 Chapter 1. Guide

WoTKit, Release 1.6.0.SNAPSHOT

Aggregated Data Retrieval

Aggregated data retrieval allows one to receive data from multiple sensors, queried using the same parameters as when
searching for sensors or sensor data. The query must be specified using one of the following 5 patterns.

Pattern 1 - With Start/End
start The most recent starting time of the query. This value is optional and defaults to the current time.
end A timestamp before the start time.
limit Specifies the limit to return. This value is optional, with a default value of 1000.
offset Specifies the offset to return. This value is optional, with a default value of 0.

Pattern 2 - With Start/After
start A starting timestamp.
after A relative timestamp after start.
limit Specifies the limit to return. This value is optional, with a default value of 1000
offset Specifies the offset to return. This value is optional, with a default value of 0

Pattern 3 - With Start/Before
start A starting timestamp.
before A relative timestamp before start.
limit Specifies the limit to return. This value is optional, with a default value of 1000
offset Specifies the offset to return. This value is optional, with a default value of 0

Pattern 4 - With Start/BeforeE
start A starting timestamp.
beforeE The number of elements to return before start
offset Specifies the offset to return. This value is optional, with a default value of 0

Pattern 5 - With Start/AfterE
start A starting timestamp.
afterE The number of elements to return after start
offset Specifies the offset to return. This value is optional, with a default value of 0

The following parameters may be added to any of the above patterns:

• scope

• tags

• private (deprecated, use visibility instead)

• visibility

• text

• active

• location (in the form: “location=-31.257,-12.55:-21.54,9.65”)

• metadata

• groups

To receive data from more that one sensor, use the following:

URL http://wotkit.sensetecnic.com/api/v1/data?{query-param}={query-value}&{param}={value}...
Privacy Public or Private
Format json
Method GET
Returns 200 OK on success. A JSON object in the response body containing a list of timestamped data records.

1.2. V1 API Reference 37

http://wotkit.sensetecnic.com/api/v1/data?\protect \T1\textbraceleft query-param\protect \T1\textbraceright =\protect \T1\textbraceleft query-value\protect \T1\textbraceright &\protect \T1\textbraceleft param\protect \T1\textbraceright =\protect \T1\textbraceleft value\protect \T1\textbraceright ...

WoTKit, Release 1.6.0.SNAPSHOT

example
curl --user {username}:{password} http://wotkit.sensetecnic.com/api/v1/data?tags=vancouver&beforeE=20

1.2.7 Sensor Control Channel: Actuators

An actuator is a sensor that uses a control channel to actuate things. Rather than POSTing data to the WoTKit, an
actuator script or gateway polls the control URL for messages to affect the actuator, to do things like move a servo
motor, turn a light on or off, or display a message on a screen. Any name/value pair can be sent to an actuator in a
message.

For example, provided with the WoTKit at , a control widget that can be added to a dashboard
(http://wotkit.sensetecnic.com/wotkit//dashboards) sends three types of events to the sensor control channel:

button ‘on’ or ‘off’ to control a light, or switch.
message text message for use by the actuator, for example to be shown on a message board or display.
slider a numeric value to affect the position of something, such as a server motor.

Sending Actuator Messages

To send a control message to a sensor (actuator), you must POST name value pairs corresponding to the data fields to
the /sensors/{sensorname}/message URL.

URL http://wotkit.sensetecnic.com/api/v1/sensors/{sensorname}/message
Privacy Public or Private
Format x-www-form-urlencoded
Method POST
Returns OK 200 (no content) on success.

Receiving Actuator Messages

To receive actuator messages you must first subscribe to an Actuator Controller, then you can query for messages.

Note: In order to receive messages from an actuator, you must own that actuator.

Subscribing to an Actuator Controller

First, subscribe to the controller by POSTing to /api/control/sub/{sensor-name}. In return, we receive a
json object containing a subscription id.

38 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v1/data?tags=vancouver&beforeE=20
http://wotkit.sensetecnic.com/wotkit//dashboards
http://wotkit.sensetecnic.com/api/v1/sensors/\protect \T1\textbraceleft sensorname\protect \T1\textbraceright /message

WoTKit, Release 1.6.0.SNAPSHOT

URL http://wotkit.sensetecnic.com/api/v1/control/sub/{sensor-name}
Privacy Private
Format json
Method POST
Returns 200 OK on success. A JSON object in the response body containing subscription id.

Example subscription id returned:

{
"subscription":1234

}

Query an Actuator

Using the subscription id, then poll the following resource: /api/control/sub/{subscription-id}?wait=10.
The wait parameter specifies the time to wait in seconds for a control message. If unspecified, a default wait time of
10 seconds is used. The maximum wait time is 20 seconds. The server will respond on timeout, or when a control
messages is received.

URL http://wotkit.sensetecnic.com/api/v1/control/sub/{subscription-id}?wait={wait-time}
Privacy Private
Format json
Method GET
Returns 200 OK on success. A JSON object in the response body containing control messages.

Note: Each subscription will be open for as long as the client that created it keeps sending long pull requests. A
subscription that does not receive any requests after 5 minutes (3000 seconds) will be garbage-collected and will not
be accessible after that. A client must catch this error and create a new subscription if this occurs.

To illustrate, the following code snippet uses HTTP client libraries to subscribe and get actuator messages from the
server, and then print the data. Normally, the script would change the state of an actuator like a servo or a switch based
on the message received.

sample actuator code
import urllib
import urllib2
import base64
import httplib

try:
import json

except ImportError:
import simplejson as json

#note trailing slash to ensure .testactuator is not dropped as a file extension
actuator="mike.testactuator/"

authentication setup

1.2. V1 API Reference 39

http://wotkit.sensetecnic.com/api/v1/control/sub/\protect \T1\textbraceleft sensor-name\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v1/control/sub/\protect \T1\textbraceleft subscription-id\protect \T1\textbraceright ?wait=\protect \T1\textbraceleft wait-time\protect \T1\textbraceright

WoTKit, Release 1.6.0.SNAPSHOT

conn = httplib.HTTPConnection("wotkit.sensetecnic.com")
base64string = base64.encodestring('%s:%s' % ('{id}', '{password}'))[:-1]
authheader = "Basic %s" % base64string
In some clients (<Python 2.6) params must be used to force sending Content-Length header
so, we'll use dummy params.
params = urllib.urlencode({'@type': 'subscription'})
headers = {'Authorization': authheader}

#subscribe to the controller and get the subscriber ID
conn.request("POST", "/api/v1/control/sub/" + actuator, params, headers=headers)
response = conn.getresponse()
data = response.read()

json_object = json.loads(data)
subId = json_object['subscription']

#loop to long poll for actuator messages
while 1:

print "request started for subId: " + str(subId)
conn.request("GET", "/api/v1/control/sub/" + str(subId) + "?wait=10", headers=headers)
response = conn.getresponse()
data = response.read()

json_object = json.loads(data)

change state of actuator based on json message received
print json_object

1.2.8 Tags

Sensors can specify several tags that can be used to organize them. You can get a list of tags, either the most used by
public sensors or by a particular sensor query.

Querying Sensor Tags

A list of matching tags. The query parameters are as follows:

40 Chapter 1. Guide

WoTKit, Release 1.6.0.SNAPSHOT

Name Value Description
scope

all-all tags used by sensors that the current user has
access to; | subscribed-tags for sensors the user has
subscribed to; | contributed-tags for sensors the user
has contributed to the system.

private DEPRECATED, use visibility instead. (true - private
sensors only; false - public only)

visibility filter by the visibility of the sensors, either of public,
organization or private

text text to search in the sensors’s name, long name and de-
scription

active when true, only returns tags for sensors that have been
updated in the last 15 minutes.

offset offset into list of tags for paging
limit limit to show for paging. The maximum number of tags

to display is 1000.
location

geo coordinates for a bounding box to search within.
Format is yy.yyy,xx.xxx:yy.yyy,xx.xxx, the order
of the coordinates are North,West:South,East. Ex-
ample: location=56.89,-114.55:17.43,-106.219

To query for tags, add query parameters after the tags URL as follows:

URL http://wotkit.sensetecnic.com/api/v1/tags?{query}
Pri-
vacy

Public or Private

For-
mat

json

Method GET
Re-
turns

200 OK on success. A JSON object in the response body containing a list of tag count objects
matching the query.

To query for all tags that contain the text bicycles use the URL:

example
curl --user {id}:{password}
``http://wotkit.sensetecnic.com/api/v1/tags?text=bicycles``

Output:

[
{

'name': 'bicycle',

1.2. V1 API Reference 41

http://wotkit.sensetecnic.com/api/v1/tags?\protect \T1\textbraceleft query\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v1/tags?text=bicycles

WoTKit, Release 1.6.0.SNAPSHOT

'count': 3,
'lastUsed': 1370887340845

},{
'name': 'bike',
'count': 3,
'lastUsed': 1350687440754

},{
'name': 'montreal',
'count': 1,
'lastUsed': 1365857340341

}
]

The lastUsed field represents the creation date of the newest sensor that uses this tag.

1.2.9 Organizations

Organizations allow multiple users to create and manage shared sensors. All users can see organizations, but only
admins can manipulate them.

List/Query Organizations

A list of matching organizations may be queried by the system. The optional query parameters are as follows:

Name Value Description
text text to search for in the name, long name and/or description
offset offset into list of organizations for paging
limit limit to show for paging. The maximum number of organizations to display is 1000.

To query for organizations, add query parameters after the sensors URL as follows:

URL http://wotkit.sensetecnic.com/api/v1/orgs?{query}
Pri-
vacy

Public

For-
mat

json

Method GET
Re-
turns

200 OK on success. A JSON object in the response body containing a list of organizations matching the
query from newest to oldest.

Viewing a Single Organization

To view a single organization, query by name:

42 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v1/orgs?\protect \T1\textbraceleft query\protect \T1\textbraceright

WoTKit, Release 1.6.0.SNAPSHOT

URL http://wotkit.sensetecnic.com/api/v1/orgs/{org-name}
Privacy Public
Format json
Method GET
Returns 200 OK if successful and a JSON on body describing the organization.

example
curl ``http://wotkit.sensetecnic.com/api/v1/orgs/electric-inc``

Output:

{
"id": 4764,
"name": "electric-inc",
"longName": "Electric, Inc.",
"description": "Electric, Inc. was established in 1970.",
"imageUrl": "http://www.example.com/electric-inc-logo.png"

}

Creating/Registering an Organization

To register a new organization, you POST an organization resource to the url /org. The organization resources is a
JSON object with the following fields:

• The organization resources is a JSON object.

• The “name” and “longName” fields are required and must both be at least 4 characters long.

• The “imageUrl” and “description” fields are optional.

Field
Name

Information

(RE-
QUIRED)

name The name of the organization. Must be at least 4 characters long.

(RE-
QUIRED)

longName A descriptive name of the organization. Must be at least 4 characters long. Can be
updated.

(OP-
TIONAL)

description Description of the organization. Can be updated.

(OP-
TIONAL)

imageUrl An image that often used in thumbnails to identify the organization. Can be
updated.

To create an organization:

1.2. V1 API Reference 43

http://wotkit.sensetecnic.com/api/v1/orgs/\protect \T1\textbraceleft org-name\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v1/orgs/electric\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}inc

WoTKit, Release 1.6.0.SNAPSHOT

URL http://wotkit.sensetecnic.com/api/v1/orgs
Pri-
vacy

Admin

For-
mat

json

Method POST
Re-
turns

201 Created if successful; Bad Request 400 if organization is invalid; Conflict 409 if an organization
with the same name already exists.

Updating an Organization

• You may update any fields except “id” and “name”.

• Only fields that are present in the JSON object will be updated.

To update an organization:

URL http://wotkit.sensetecnic.com/api/v1/orgs/{org-name}
Privacy Admin
Format json
Method PUT
Returns 200 OK if successful. No content on body.

Deleting an Organization

Deleting an organization is done by deleting the organization resource.

To delete a user:

URL http://wotkit.sensetecnic.com/api/v1/orgs/{org-name}
Privacy Admin
Format n/a
Method DELETE
Returns 200 OK if successful. No content on body.

Organization Membership

List all members of an Organization

To query for organization members:

44 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v1/orgs
http://wotkit.sensetecnic.com/api/v1/orgs/\protect \T1\textbraceleft org-name\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v1/orgs/\protect \T1\textbraceleft org-name\protect \T1\textbraceright

WoTKit, Release 1.6.0.SNAPSHOT

URL http://wotkit.sensetecnic.com/api/v1/orgs/{org-name}/members
Privacy Admin
Format n/a
Method GET
Returns 200 OK on success. A JSON object in the response body containing a list of organization members.

Add new members to an Organization

To add new members to an organization, post a JSON array of usernames:

URL http://wotkit.sensetecnic.com/api/v1/orgs/{org-name}/members
Privacy Admin
Format json
Method POST
Returns 204 No Content on success.

Usernames that are already members, or usernames that do not exist, will be ignored.

For instance, to add the users “abe”, “beth”, “cecilia” and “dylan” to the organization “electric-inc”:

example
curl --user {id}:{password} --request POST
--header ``Content-Type: application/json'' --data-binary @users-list.txt
`http://wotkit.sensetecnic.com/api/v1/orgs/electric-inc/members`

The file users-list.txt would contain the following.

["abe", "beth", "cecilia", "dylan"]

Remove members from an Organization

To remove members from an organization, DELETE a JSON array of usernames:

URL http://wotkit.sensetecnic.com/api/v1/orgs/{org-name}/members
Privacy Admin
Format json
Method DELETE
Returns 204 No Content on success. A JSON object in the response body containing a list of usernames.

Usernames that are not members, or usernames that do not exist, will be ignored.

1.2. V1 API Reference 45

http://wotkit.sensetecnic.com/api/v1/orgs/\protect \T1\textbraceleft org-name\protect \T1\textbraceright /members
http://wotkit.sensetecnic.com/api/v1/orgs/\protect \T1\textbraceleft org-name\protect \T1\textbraceright /members
http://wotkit.sensetecnic.com/api/v1/orgs/electric\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}inc/members
http://wotkit.sensetecnic.com/api/v1/orgs/\protect \T1\textbraceleft org-name\protect \T1\textbraceright /members

WoTKit, Release 1.6.0.SNAPSHOT

1.2.10 Sensor Groups

Sensor Groups are used to logically organize related sensors. Any sensor can be a member of many groups.

Currently, all Sensor Groups have private visibility, and only the owner (creator) can add/remove sensors from the
group, or make a group public.

Sensor Groups can be manipulated using a REST API in the following section

Sensor Group Format

All request body and response bodies use JSON. The following fields are present:

Field
Name

Type Notes

(RE-
QUIRED)

id Integer The id contains a unique number which is used to identify the group

(RE-
QUIRED)

name String[4,50]The name is a system-unique string identifier for the group. Names must be
lowercase containing alphanumeric, underscores or hyphens [a-z0-9_-]. The
first character must be an alphabetic character

(RE-
QUIRED)

long-
Name

String[4,100]A readable name used for visual interfaces. It must be at least 4 characters long.

(READ-
ONLY)

owner String[4,50]The name of the group’s owner. This field is set by the system and cannot be
modified.

(RE-
QUIRED)

de-
scrip-
tion

String[,255]A simple description of the group

(OP-
TIONAL)

imageUrlString[,255]A string url to an image which can be used to represent this group

(OP-
TIONAL)

sen-
sors

Ar-
ray[Sensor]

Contains a JSON list of sensors. This field is only useful for viewing sensors. To
append/remove sensors from Sensor Groups, refer to Adding a Sensor to Sensor
Group.

An example of a Sensor Group JSON would be as follows:

{
"id": 602,
"name": "test",
"longName": "test",
"description": "test",
"tags": [
"group",
"test"

],
"imageUrl": "",
"latitude": 49.25,
"longitude": -123.1,
"visibility": "PUBLIC",
"owner": "sensetecnic",
"lastUpdate": "1970-01-01T00:00:00.000Z",
"created": "2014-03-27T23:29:51.479Z",
"metadata": {
"meta": "data"

},
"childCount": 0,
"things": [],

46 Chapter 1. Guide

WoTKit, Release 1.6.0.SNAPSHOT

"thingType": "GROUP"
}

List Groups

Provides a list of all PUBLIC groups on the system as an array using the JSON format specified in Sensor Group
Format

URL http://wotkit.sensetecnic.com/api/v1/groups/
Privacy Public or Private
Format json
Method GET
Returns 200 OK if successul. A JSON object in the response body containing a list of groups.

example
curl --user {id}:{password} --request GET `http://wotkit.sensetecnic.com/api/v1/groups`

Viewing a Single Sensor Group

Similar to List Groups, but will retrieve only a single sensor group. Replace {group-name} with the group’s {id}
integer or {owner}.{name} string. The API accepts both formats

URL http://wotkit.sensetecnic.com/api/v1/groups/{group-name}
Privacy Public or Private
Format json
Method GET
Returns 200 OK if successful. A JSON object in the response body describing the sensor group.

example
curl --user {id}:{password} --request GET `http://wotkit.sensetecnic.com/api/v1/groups/sensetecnic.test`

Creating a Sensor Group

To create a sensor group, append the Sensor Group contents following Sensor Group Format.

On creation, the id is ignored because it is system generated. You should not provide an owner as it will be generated
by the system to match the credentials used to call the API. Only if you are an administrator user you will be able to
provide an owner.

URL http://wotkit.sensetecnic.com/api/v1/groups
Privacy Private
Format json
Method POST
Returns 201 Created if successful; 409 Conflict if a sensor with the same name exists.

Modifying Sensor Group Fields

Modifying is similar to creation, the content is placed in the response body

Again, the id and owner fields in the JSON object are ignored if they are modified. The Sensor Group is specified by
substituting {group-name} group’s {id} integer or {owner}.{name} string. The API accepts both formats.

1.2. V1 API Reference 47

http://wotkit.sensetecnic.com/api/v1/groups/
http://wotkit.sensetecnic.com/api/v1/groups
http://wotkit.sensetecnic.com/api/v1/groups/\protect \T1\textbraceleft group-name\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v1/groups/sensetecnic.test
http://wotkit.sensetecnic.com/api/v1/groups

WoTKit, Release 1.6.0.SNAPSHOT

URL http://wotkit.sensetecnic.com/api/v1/groups/{group-name}
Privacy Private
Format json
Method PUT
Returns 204 No Content if successful; 401 Unauthorized if user has no permissions to edit group.

Deleting a Sensor Group

Deleting a Sensor Group is fairly trivial, assuming you are the owner of the group. A response body is unnecessary.

URL http://wotkit.sensetecnic.com/api/v1/groups/{group-name}
Privacy Private
Format json
Method DELETE
Returns 204 No Content if successful; 401 Unauthorized if user has no permissions to edit group.

Adding a Sensor to Sensor Group

This is done by invoking the URL by replacing the specified parameters where {group-name} can be the group’s
{id} integer or {owner}.{name} string. {sensor-id} should be the sensor’s id integer.

URL http://wotkit.sensetecnic.com/api/v1/groups/{group-name}/sensors/{sensor-id}
Pri-
vacy

Private

For-
mat

json

Method POST
Re-
turns

204 No Content if successful; 400 if sensor is already a member of sensor group; 401 Unauthorized if
user is unauthorized to edit group.

Removing a Sensor from Sensor Group

The format is the same as Adding a Sensor to Sensor Group except replacing method with DELETE. Replace
{sensor-id} with the sensor’s {id} integer.

URL http://wotkit.sensetecnic.com/api/v1/groups/{group-name}/sensors/{sensor-id}
Privacy Private
Format n/a
Method DELETE
Returns 204 No Content if successful; 401 Unauthorized if user is unauthorized to edit group.

1.2.11 News

The “news” resource provides a list of interesting and recent activities in the WoTKit.

URL http://wotkit.sensetecnic.com/api/v1/news
Privacy Public
Format n/a
Method GET
Returns 200 OK if successful. A JSON object in the response body containing a list of news items.

48 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v1/groups/\protect \T1\textbraceleft group-name\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v1/groups/\protect \T1\textbraceleft group-name\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v1/groups/\protect \T1\textbraceleft group-name\protect \T1\textbraceright /sensors/\protect \T1\textbraceleft sensor-id\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v1/groups/\protect \T1\textbraceleft group-name\protect \T1\textbraceright /sensors/\protect \T1\textbraceleft sensor-id\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v1/news

WoTKit, Release 1.6.0.SNAPSHOT

example
curl ``http://wotkit.sensetecnic.com/api/v1/news``

Output:

[{
'timestamp': 1370910428123,
'title': u'The sensor "Light Sensor" has updated data.',
'url': u'/sensors/5/monitor'

},{
'timestamp': 1370910428855,
'title': u'The sensor "api-data-test-1" has updated data.',
'url': u'/sensors/40/monitor'

}]

1.2.12 Statistics

The “stats” resource provides statistics, like number of public sensors, active sensors, or new sensors. It can be
accessed via:

URL http://wotkit.sensetecnic.com/api/v1/stats
Privacy Public
Format not applicable
Method GET
Returns 200 OK if successful. A JSON object in the response body containing describing statistics.

example
curl ``http://wotkit.sensetecnic.com/api/v1/stats``

Output:

{
'total': 65437,
'active': 43474,
'new': {

'day': 53,
'week': 457,
'month': 9123,
'year': 40532

}
}

1.3 V2 API Reference

Please be advised that V2 is in beta and not ready for production.

1.3. V2 API Reference 49

http://wotkit.sensetecnic.com/api/v1/news
http://wotkit.sensetecnic.com/api/v1/stats
http://wotkit.sensetecnic.com/api/v1/stats

WoTKit, Release 1.6.0.SNAPSHOT

1.3.1 Sensor Data

In the WoTKit, sensor data consists of a timestamp followed by one or more named fields. There are a number of
reserved fields supported by the WoTKit:

Reserved
field name

Description

timestamp the time that the sensor data was collected. This is a long integer representing the number of
milliseconds from Jan 1, 1970 UTC. Optional; if not supplied, a server-supplied timestamp will
be used.

id a unique identifier for the data reading. This is to distinguish one reading from another when they
share the same timestamp. Read only; This field is read only and should not be sent by the client
when sending new data.

sensor_id the globally unique sensor id that produced the data. Read only; This is a read only field
generated by the wotkit that should not be sent by a client when sending new data.

sensor_name the globally unique sensor name, in the form {username}.{sensorname}. Read only;
This is a read only field and should not be sent by the client when sending new data.

When a new sensor is created, a number of default fields are created by the wotkit for a sensor as follows. Note that
these can be changed by editing the sensor fields.

Default field
name

Description

lat the current latitude location of the sensor in degrees (number). Needed for map
visualizations.

lng the current longitude location of the sensor in degrees (number). Needed for map
visualizations.

value the primary value of the sensor data collected (number). Needed for most visualizations.
message a text message, for example a twitter message (text). Needed for text/newsfeed

visualizations.

In addition to these default fields, additional fields can be added by updating the sensor fields in the WoTKit UI or
Sensor Fields in the API.

Note: Python’s time.time() function generates the system time in seconds, not milliseconds. To convert this to
an integer in milliseconds use int(time.time()*1000).

In Javascript: var d = new Date(); d.getTime();

In Java: System.currentTime().

Sending New Data

To send new data to a sensor, POST name value pairs corresponding to the data fields to
/sensors/{sensorname}/data. There is no need to supply the sensor id, or sensor name fields since
the sensor is specified in the URL.

If a timestamp is not provided in the request body, it will be set to the current time by the the server.

To send new data:

URL http://wotkit.sensetecnic.com/api/v2/sensors/{sensorname}/data
Privacy Private
Format not applicable
Method POST
Returns 201 Created if successful.

50 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v2/sensors/\protect \T1\textbraceleft sensorname\protect \T1\textbraceright /data

WoTKit, Release 1.6.0.SNAPSHOT

Example
curl --user {id}:{password} --request POST -d value=5 -d lng=6 -d lat=7
`http://wotkit.sensetecnic.com/api/v2/sensors/test-sensor/data`

Updating a Range of Historical Data

To insert or update a range of historical data, you PUT data (rather than POST) data into the system. Note that data
PUT into the WoTKit will not be processed in real time, since it occurred in the past. Thus, a timestamp field is
required.

• The request body must be a list of JSON objects, as specified in Sensor Data. In the case of updating existent
data is that each objet MUST contain a timestamp value which will be updated.

Note: Any existing data matching the provided timestamp be deleted and replaced by the data supplied.

To update data:

URL http://wotkit.sensetecnic.com/api/v2/sensors/{sensorname}/data
Privacy Private
Format JSON
Method PUT
Returns 204 No Content if successful. 400 Bad Request if unsuccessful.

Example of valid data:

[{"timestamp":"2012-12-12T03:34:28.626Z","value":67.0,"lng":-123.1404,"lat":49.20532},
{"timestamp":"2012-12-12T03:34:28.665Z","value":63.0,"lng":-123.14054,"lat":49.20554},
{"timestamp":"2012-12-12T03:34:31.621Z","value":52.0,"lng":-123.14063,"lat":49.20559},
{"timestamp":"2012-12-12T03:34:35.121Z","value":68.0,"lng":-123.14057,"lat":49.20716},
{"timestamp":"2012-12-12T03:34:38.625Z","value":51.0,"lng":-123.14049,"lat":49.20757},
{"timestamp":"2012-12-12T03:34:42.126Z","value":55.0,"lng":-123.14044,"lat":49.20854},
{"timestamp":"2012-12-12T03:34:45.621Z","value":56.0,"lng":-123.14215,"lat":49.20855},
{"timestamp":"2012-12-12T03:34:49.122Z","value":55.0,"lng":-123.14727,"lat":49.20862},
{"timestamp":"2012-12-12T03:34:52.619Z","value":59.0,"lng":-123.14765,"lat":49.20868}]

example
curl --user {id}:{password} --request PUT --data-binary @data.txt
`http://wotkit.sensetecnic.com/api/v2/sensors/test-sensor/data`

where data.txt contains JSON data similar to the above JSON array.

1.3. V2 API Reference 51

http://wotkit.sensetecnic.com/api/v2/sensors/test\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}sensor/data
http://wotkit.sensetecnic.com/api/v2/sensors/\protect \T1\textbraceleft sensorname\protect \T1\textbraceright /data
http://wotkit.sensetecnic.com/api/v2/sensors/test\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}sensor/data

WoTKit, Release 1.6.0.SNAPSHOT

Retrieving a Single Data Item

If you know the data element’s id, you can query for a single data element using the following query.

URL http://wotkit.sensetecnic.com/api/v2/sensors/{sensor-name}/data/{data_id}
Privacy Public or Private, depending on sensor privacy
Format json
Method GET
Returns 200 OK on success. A JSON object in the response body containing a list of timestamped data records.

Retrieving Data Using Query

To retrive sensor data over a time range you can use the following endpoint. An interactive guide on how to use this
endpoint is available at: Querying Sensor Data.

URL http://wotkit.sensetecnic.com/api/v2/sensors/{sensor-name}/data
Privacy Public or Private, depending on sensor privacy
Format json
Method GET
Returns 200 OK on success. A JSON object in the response body containing a list of timestamped data records.

The query parameters supported are the following. They can only be used together if they appear in the same Group
below.

Pa-
rame-
ter

Group Type Description

recent_t1 inte-
ger

Gets the elements up to recent_t milliseconds ago

recent_n2 inte-
ger

Gets the n recent elements

start 3 times-
tamp

The absolute starting point (in milliseconds since Jan 1, 1970).

start_id3 id The starting id of sensor_data at timestamp start. Used for paging and to
distinguish data elements that share the same timestamp.

end 3 times-
tamp

The absolute ending timestamp (in milliseconds since Jan 1, 1970)

end_id 3 times-
tamp

The end id of sensor_data with timestamp end. Used for paging.

limit [2,3] inte-
ger

specifies how many datapoints to see on each response

Delete Data by Id

Same as api-v2-get-single-data instead using HTTP Delete.

URL http://wotkit.sensetecnic.com/api/v2/sensors/{sensorname}/data/{data_id}
Privacy Private
Format not applicable
Method DELETE
Returns 204 No Content if successful.

52 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v2/sensors/\protect \T1\textbraceleft sensor-name\protect \T1\textbraceright /data/\protect \T1\textbraceleft data_id\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v2/sensors/\protect \T1\textbraceleft sensor-name\protect \T1\textbraceright /data
http://wotkit.sensetecnic.com/api/v2/sensors/\protect \T1\textbraceleft sensorname\protect \T1\textbraceright /data/\protect \T1\textbraceleft data_id\protect \T1\textbraceright

WoTKit, Release 1.6.0.SNAPSHOT

Delete Data using Data Query

Can delete using query parameters in Retrieving Data Using Query with the restriction on only using group 3 param-
eters.

URL http://wotkit.sensetecnic.com/api/v2/sensors/{sensorname}/data
Privacy Private
Format not applicable
Method DELETE
Returns 204 No Content if successful.

Sending Aggregated Data

One can send aggregated data from multiple sensors from an organization/owner. Each data point MUST have at least
the following fields: “sensor_name” (without owner), “timestamp”, and other fields marked as “required” by each
individual sensor.

To publish data from more that one sensor, use the following:

URL http://wotkit.sensetecnic.com/api/v2/data/{owner}
Privacy Private
Format json
Method POST
Returns 204 No Content if successful

Example of valid data:

[{"sensor_name": "{sensorname}", "value":12.0,"lng":-123.1404,"lat":49.20532,"timestamp":1441068278},
{"sensor_name": "{sensorname}", "value":67.0,"lng":-123.1404,"lat":49.20532,"timestamp":1441068278},
{"sensor_name": "{sensorname}", "value":1.0,"lng":-123.1404,"lat":49.20532,"timestamp":1441068278}]

example
curl --user {username}:{password} --request POST -H ``Content-Type: application/json'' --data-binary @data.txt `http://wotkit.sensetecnic.com/api/v2/data/{organization}`

where data.txt contains JSON data similar to the above JSON array.

1.3.2 Alerts

An alert is set up by an user for notification purpose. Multiple conditions can be attached to an alert. Each condition is
associated with a sensor field. An alert fires and sends a message to the owner’s inbox and email (if email functionality
is enabled) when all of its attached conditions are satisfied. Currently, each user is limited to have a maximum of 20
alerts.

An alert has the following attributes:

1.3. V2 API Reference 53

http://wotkit.sensetecnic.com/api/v2/sensors/\protect \T1\textbraceleft sensorname\protect \T1\textbraceright /data
http://wotkit.sensetecnic.com/api/v2/data/\protect \T1\textbraceleft owner\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v2/data/\protect \T1\textbraceleft organization\protect \T1\textbraceright

WoTKit, Release 1.6.0.SNAPSHOT

Name Value Description
id the numeric id of the alert. It is automatically assigned

when alert is created.
name ** the name of the alert.
longName longer display name of the alert.
description a description of the alert.
owner the user that creates the alert. The value of this field is

automatically assigned as a user creates an alert.
disabled

the on/off state of the alert.
- If ‘disabled’ is ‘true’, the alert is switched off; it
switches on if otherwise.

inProgress
whether conditions are still true after an alert has fired.

- inProgress is ‘true’ if all alert conditions remain
true after an alert has fired. It becomes ‘false’
when any condition turns false. An alert gets
fired when its inProgress state changes from false
to true.

template The message template that is sent to the inbox when alert
is fired. You can use ${alertName}, ${id}, ${descrip-
tion} and ${user} to compose a message.

email The email the alert is sent to.
sendEmail A boolean to enable/disable send email functionaity.
conditions the list of alert conditions

** Required when creating a new alert.

An alert condition is composed of a sensor field, an operator for evaluation, and a value. It has the following attributes:

Name Value Description
sensorId the ID of the sensor associated with the condition
field the field name to be compared of the chosen sensor
operator

the conditon operator, its value can be one of following:

‘LT’: Less Than
‘LE’: Less Than Or Equal To
‘GT’: Greater Than
‘GE’: Greater Than Or Equal To
‘EQ’: Equal
‘NEQ’: Not Equal
‘NULL’: Is Null
‘NOTNULL’: Is Not Null

value value that the operator compares with

Listing Alerts of an User

To view a list of “alerts” created by an user:

54 Chapter 1. Guide

WoTKit, Release 1.6.0.SNAPSHOT

URL http://wotkit.sensetecnic.com/api/v2/alerts
Privacy Private
Format JSON
Method GET
Returns 200 OK if successful. A JSON object in the response body containing a list of alerts.

example
curl --user {id}:{password} ``http://wotkit.sensetecnic.com/api/v2/alerts``

Sample Output:

[{
"id": 6,
"owner": "crysng",
"name": "temperature-alert",
"longName": "Temperature Alert",
"description": "This alert notifies user when Hydrogen Sulfide content and Wind speed is too high at Burnaby Burmount. ",
"disabled": false,
"inProgress": false,
"template": "Hydrogen Sulfide and wind speed is high!",
"sendEmail": true,
"email": "rottencherries@hotmail.com",
"conditions": [

{
"sensorId": 241,
"field": "h2s",
"operator": "GT",
"value": 10

},
{

"sensorId": 241,
"field": "wspd",
"operator": "GE",
"value": 50

}
]

},
{

"id": 5,
"owner": "crysng",
"name": "test",
"longName": "Moisture Sensor Alert",
"description": "This alert fires when moisture level is too low. ",
"disabled": false,
"inProgress": false,
"template": "Moisture level is too low, water the plant now!",
"sendEmail": true,
"email": "someone@email.com",
"conditions": [

{
"sensorId": 504,
"field": "value",
"operator": "LT",

1.3. V2 API Reference 55

http://wotkit.sensetecnic.com/api/v2/alerts
http://wotkit.sensetecnic.com/api/v2/alerts

WoTKit, Release 1.6.0.SNAPSHOT

"value": 3
}

]
}]

Viewing an Alert

To view an alert, query the alert by its id as followed:

URL http://wotkit.sensetecnic.com/api/v2/alerts/{alert id}
Privacy Private
Format json
Method GET
Returns 200 OK if successful. A JSON object in the response body describing an alert.

example
curl --user {id}:{password}
``http://wotkit.sensetecnic.com/api/v2/alerts/5``

Output:

{
"id": 5,
"owner": "crysng",
"name": "test",
"longName": "Moisture Sensor Alert",
"description": "This alert fires when moisture level is too low. ",
"disabled": false,
"inProgress": false,
"template": "Moisture level is too low, water the plant now!",
"sendEmail": true,
"email": "someone@email.com",
"conditions": [

{
"sensorId": 504,
"field": "value",
"operator": "LT",
"value": 3

}
]

}

Creating Alerts

The alert resource is a JSON object. To create an alert you POST a sensor resource to the url /v2/alerts.

To create an alert:

56 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v2/alerts/\protect \T1\textbraceleft alert id\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v2/alerts/5

WoTKit, Release 1.6.0.SNAPSHOT

URL http://wotkit.sensetecnic.com/api/v2/alerts
Pri-
vacy

Private

For-
mat

JSON

Method POST
Re-
turns

200 OK if successful; 400 Bad Request if sensor is invalid; 409 Conflict if alert with the same name
already exists.

THE JSON object has the following fields:

Field Name Information
(REQUIRED) name The unique name for the alert. It must

be at least 4 characters long, con-
tain only lowercase letters, numbers,
dashes and underscores, and can start
with a lowercase letter or an under-
score only.

(OPTIONAL) longName longer display name of the alert.
(OPTIONAL) description a description of the alert.
(OPTIONAL) disabled

the on/off state of the alert.
- If ‘disabled’ is ‘true’, the
alert is switched off; it
switches on if otherwise.

(OPTIONAL) template The message template that is sent to
the inbox when alert is fired. You can
use ${alertName}, ${id}, ${descrip-
tion} or ${user} to compose a mes-
sage, e.g. “Alert by ${user} fired”

(OPTIONAL) email The email the alert is sent to. It de-
faults to the owner’s email.

(OPTIONAL) sendEmail A boolean to enable/disable send
email functionaity.

(OPTIONAL) conditions The list of alert conditions

example1
curl --user {id}:{password} --request POST --header ``Content-Type: application/json''
--data-binary @test-alert.txt `http://wotkit.sensetecnic.com/api/v2/alerts`

For this example, the file test-alert.txt contains the following. This is the minimal information needed to create an
alert.

{
"name":"test alert",
"description":"A test alert.",
"template":"Template for test alert using any of ${alertName}, ${id}, ${description} or ${user}",
"sendEmail":false

}

1.3. V2 API Reference 57

http://wotkit.sensetecnic.com/api/v2/alerts
http://wotkit.sensetecnic.com/api/v2/alerts

WoTKit, Release 1.6.0.SNAPSHOT

example2
Now, let’s create an alert with additional information and conditions. The file test-alert.txt contains the following.

{
"name": "test alert 2",
"longName": "Test Alert 2",
"description": "This is test 2. ",
"disabled": false,
"template": "The alert ${alertName} has fired!! ",
"sendEmail": true,
"email": "someone@email.com",
"conditions": [
{

"sensorId": 504,
"field": "value",
"operator": "LT",
"value": 3

},
{

"sensorId": 24,
"field": "data",
"operator": "NOTNULL"

}
]

}

Updating Alerts

Updating an alert is the same as creating a new alert other than PUT is used and the alert id is included in the URL.

Note that all top level fields supplied will be updated.

• You may update any fields except “id”, and “owner”.

• Only fields that are present in the JSON object will be updated.

To update an alert owned by the current user:

URL http://wotkit.sensetecnic.com/api/v2/v2/alerts/{alert id}
Privacy Private
Format JSON
Method PUT
Returns 200 OK if successful.

For instance, to update an alert:

example
curl --user {id}:{password} --request PUT --header ``Content-Type: application/json''
--data-binary @update-alert.txt `http://wotkit.sensetecnic.com/api/v2/alerts/{alert id}`

The file update-alert.txt would contain the following:

58 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v2/v2/alerts/\protect \T1\textbraceleft alert id\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v2/alerts/\protect \T1\textbraceleft alert\unhbox \voidb@x \penalty \@M \ id\protect \T1\textbraceright

WoTKit, Release 1.6.0.SNAPSHOT

{
"longName": "New Alert Name",
"description":"Updated Description"

}

Deleting Alerts

Deleting an alert is done by deleting the alert resource.

To delete an alert owned by the current user:

URL http://wotkit.sensetecnic.com/api/v2/alerts/{alert id}
Privacy Private
Format not applicable
Method DELETE
Returns 204 No Response if successful.

example
curl --user {id}:{password} --request DELETE
`http://wotkit.sensetecnic.com/api/v2/alerts/{alert id}`

1.3.3 Inbox

The Inbox is the storage place for inbox messages that are sent by an alert firing event.

An inbox message has the following attributes:

Name Value Description
id the numeric id of the message. It is automatically generated.
timestamp the time that the message is sent to inbox.
title title of the inbox message
message the message content
sendEmail the boolean variable of whether email functionality is enabled
read the flag of whether the message is read
sent the flag of whether an email is sent

Listing Inbox Messages of an User

To view a list of “inbox messages” of an user:

URL http://wotkit.sensetecnic.com/api/v2/inbox
Privacy Private
Format JSON
Method GET
Returns 200 OK if successful. A JSON object in the response body containing a list of messages.

1.3. V2 API Reference 59

http://wotkit.sensetecnic.com/api/v2/alerts/\protect \T1\textbraceleft alert id\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v2/alerts/\protect \T1\textbraceleft alert\unhbox \voidb@x \penalty \@M \ id\protect \T1\textbraceright
http://wotkit.sensetecnic.com/api/v2/inbox

WoTKit, Release 1.6.0.SNAPSHOT

example
curl --user {id}:{password} ``http://wotkit.sensetecnic.com/api/v2/inbox``

Sample Inbox Messages Output:

[
{
"id": 5,
"timestamp": "2014-04-17T00:51:41.701Z",
"title": "Moisture Sensor Alert",
"message": "Moisture level is too low, water the plant now!",
"sendEmail": true,
"email": "someone@email.com",
"read": false,
"sent": false
}

]

60 Chapter 1. Guide

http://wotkit.sensetecnic.com/api/v2/inbox

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

61

WoTKit, Release 1.6.0.SNAPSHOT

62 Chapter 2. Indices and tables

Index

A
Access Token, 18
Actuator Messages, see Actuator Polling, see Actuator

Subscription, 38
Actuator Polling, 39
Actuator Subscription, 38
Actuators, 38
Acuator Example, 39
Aggregated Sensor Data, see Sensor Data, 36
Alerts, 53
Alerts Query, 54
Alerts Query by ID, 56
API Permissions, 15
Applications, 17
Authentication, 15

B
Bulk Sensor Data, 32, 51

Sensor Data Creation, 32, 51

C
Control Messages, see Controller Polling, see Controller

Subscription, 38
Controller Polling, 39
Controller Subscription, 38
Create Alert, 56

D
Default Sensor Fields, 27
Delete Alert, 59
Delete Sensor, 26

F
Formatted Sensor Data, see Sensor Data Retrieval, 34

I
Inbox, 59
Inbox Message Query, 59

K
Keys, 16

M
Methods Privacy, 15
Multiple Sensor Registration, 24

Sensor Registration, 24

N
News, see Statistics, 48, see Statistics

O
OAuth2, 17
Organization Creation, 43
Organization Deletion, 44
Organization Member Creation, 45
Organization Member Removal, 45
Organization Members, 44
Organization Query, 42
Organization Updating, 44

Q
Querying Sensor Data, 3

R
Raw Sensor Data, 33

S
Send Actuators Messages, 38
Send Control Messages, 38
Sensor Data, 30, 49
Sensor Data Creation, 31, 50

Bulk Sensor Data, 32, 51
Sensor Data Deletion, 33, 51
Sensor Data Retrieval, see Formatted Sensor Data, 33
Sensor Field Deletion, 30
Sensor Field Update, 28
Sensor Fields, 18
Sensor Fields Query, 28
Sensor Registration, 23

Multiple Sensor Registration, 24
Sensor Sub-Fields, 27
Sensor Subscriptions, 26

63

WoTKit, Release 1.6.0.SNAPSHOT

Sensors, 20
SmartStreets, 18
Statistics, see News, 49
Subscribe to a Sensor, 26

Unsubscribe from a Sensor, 27

T
Tags, see Sensors, 40

U
Unsubscribe from a Sensor, 27

Subscribe to a Sensor, 27
Update Alert, 58
Update Sensors, 25

64 Index

	Guide
	WoTKit API Guides
	V1 API Reference
	V2 API Reference

	Indices and tables

